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ABSTRACT 

Within the context of naval warfare, commanders and their staffs require access to 
a wide range of information to carry out their duties. This information provides them 
with the knowledge necessary to determine the position, identity and behavior of the 
enemy. This document is concerned with the fusion of identity declarations through the 
use of statistical analysis rooted in the Dempster-Shafer theory of evidence. It proposes 
to hierarchically structure the declarations according to STANAG 4420 (Display 
Symbology and Colours for NATO Maritime Units). More specifically the aim of this 
document is twofold: to explore the problem of fusing identity declarations emanating 
:from different sources, and to offer the decision maker a quantitative analysis based on 

statistical methodology that can enhance his/her decision making process regarding the 
identity of detected objects. 

RESUME 

Dans un contexte de guerre navale, le commandant d'un navire s'appuie sur un 
eventail imposant d'information pour analyser la situation tactique. Cette information 
comporte notamment des renseignements concernant la position, l'identite et le 
comportement des objets detectes. Ce document se concentre sur la fusion de 
declarations d'identite au moyen de la theorie de !'evidence de Demspter-Shafer. On y 
propose de structurer de fa9on hierarchique les declarations d'identite a l'aide de la norme 
STANAG 4420 de l'OTAN. Une etude de la problematique de la fusion de declarations 
d'identite provenant de plusieurs sources nous amene a of:frir au commandant une analyse 
quantitative basee sur une methodologie statistique pouvant le/la seconder dans son 
processus de prise de decision quanta l'identite des objets detectes. 
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EXECUTIVE SUMMARY 

In today's naval warfare, commanders and their staffs, who are both users and 
active elements of command and control systems, require access to a wide range of 
information to carry out their duties. In particular, their actions are based on information 
concerning the position, identity and behavior of other vessels in their vicinity. The 
position information determines where objects are, whereas the identity information 
determines what they are. Behavioral information is concerned with what the objects are 
doing. In warfare, no one piece of information can be accepted as complete truth. In 
order to lessen the damaging effects of poor quality evidence, the combination of 
information from every possible source is of primary importance. This combination 
process has often been carried out manually but in order to cope with the ever increasing 
flow of information, automation has surfaced as a possible option for the fusion of 
positional and identity information. 

This document is concerned with the use of the Dempster-Shafer theory of 
evidence for the fusion of identity declarations within a naval environment. It proposes 
to hierarchically structure the identity declarations according to NATO's STANAG 4420 
charts, which provide a better base for achieving interoperability in information exchange 
between nations than uncontrolled alternatives. 

The Bayesian approach is also investigated but is found to suffer from major 
deficiencies in a hierarchical context, when fully specified likelihoods are not available. 
Other problems associated with this approach are the coding of ignorance and the strict 
requirements on the belief of a hypothesis and its negation. 

One drawback of the Dempster-Shafer evidential theory is the long calculation 
time required by its high computational complexity. Due to the hierarchical nature of the 
evidence, an algorithm proposed by Shafer & Logan is implemented which reduces the 
calculations from exponential to linear time proportional to the number of nodes in the 
tree. A semi-automated decision making technique, based on belief and plausibility 
values, is then described to select alternatives which best support the combined identity 
declarations. The final decision will be taken by the decision maker, because he/she 
remains an important part of the process and because the choice of the final identity is 
typically scenario and mission dependent. 

This document has only begun to investigate the use of the Dempster-Shafer 
approach in the naval environment. In fact, the various concepts studied could be 
applicable to the domain of wide area fusion within the framework of a Communications, 
Command, Control and Intelligence (C31) system. 
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1.0 INTRODUCTION 

In today's naval warfare, commanders and their staffs, who are both users and 

active elements of command and control systems, require access to a wide range of 
information to carry out their duties. In particular, their actions are based on information 

concerning the position, identity and behavior of other vessels in their vicinity (Wilson, 

Ref. I). The position information determines where objects are, whereas the identity 

information determines what they are. Behavioral information is concerned with what 

the objects are doing. 

In warfare, no one piece of information can be accepted as complete truth. In 

order to lessen the damaging effects of poor quality evidence, the combination of 

information from every possible source is of primary importance. This combination 

process has often been carried out manually but, in order to cope with the ever increasing 

flow of information, automation has surfaced as a possible option for the fusion of 

positional and identity information. 

This document is concerned with the investigation of automated identification 
techniques through the use of statistical analysis rooted in the Dempster-Shafer theory of 

evidence. More specifically, the aim of this document is twofold: to explore the problem 
of fusing identity information emanating from different sources, and to offer the decision 

maker a quantitative analysis based on statistical methodology that can enhance his/her 
decision making process regarding the identity of detected objects. 

Chapter 2 describes the problem facing naval commanders and gives a brief 
survey of current identity information sources available on a Canadian Patrol Frigate type 

ship for above ':Vater warfare. Potential future identity information sources are also 

mentioned. Three levels of information fusion architectures are also discussed which 
correspond to the three following categories of identity information: sensor signals, 

attribute information and identity declaration. As focus is brought on the fusion of 

identity declarations, it is suggested that NATO's STANAG 4420 (STAndard NATO 
AGreement) charts, which were designed for representing maritime tactical information, 

would be an appropriate tool for a hierarchical structuring of identity declarations. 
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Fusion approaches are then suggested based on the premise that identity declarations are 

probabilistic in nature, so that each declaration is characterized by a confidence value. 

Chapters 3 and 4 describe two approaches capable of fusing uncertain 

information: the Bayesian paradigm of probability theory and the Dempster-Shafer 

evidential theory, respectively. These approaches are descrih~d in terms of standard and 

hierarchically structured information, and examples are offiered. Two techniques for 

combining hierarchical information are detailed: the first is due to Pearl (Ref. 2) and the 

second developed by Shafer & Logan (Ref. 3). Advantages and disadvantages of each 

approach are discussed. 

Chapter 5 briefly discusses decision making techniques based on the Dempster­

Shafer representation and pertaining to information structured in a hierarchical manner, in 

order to provide a decision making approach to the identity dedaration fusion problem. 

Chapter 6 proposes an identity declaration fusion function based on the findings 

of Chapters 2 to 5. A complete example is provided; it de!tails the inputs, the fusion 

results and decision making alternatives. 

The research and development activities described in this document were 

performed at DREV between 1993 and 1995 under PSC12C. 
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2.0 PROBLEM DESCRIPTION 

In today's naval warfare, commanders and their staffs, who are both users and 

active elements of command and control systems, require access to a wide range of 

information to carry out their duties. In particular, their actions are based on information 

concerning the position, identity and behavior of other vessels in their vicinity (Wilson, 

Ref. 1). 

The prime parameter is the position of objects surrounding a ship because identity 

and behavior mean little unless they can be associated with position. The position 

information determines where objects are, whereas the identity information determines 

what they are. The third type of information is behavior, that is, finding out what the 

objects are doing in order to assess the potential threat. Deductive reasoning plays a key 

role in determining behavioral information (Wilson, Ref. 1 ). 

In warfare, no one piece of information can be accepted as complete truth. In 

order to lessen the damaging effects of poor quality evidence, the combination of 

information from all available sources is of primary importance. This combination 

process has often been carried out manually but, in order to cope with the ever increasing 

flow of information, automation has surfaced as a possible option. This is particularly 

true for the fusion of positional information, but the same approach could also be 

considered for identity information. 

Waltz & Llinas (Ref. 4) state that identity estimation is a much broader problem 

than positional estimation because identity is a much broader concept than position, 

involving a larger number of variables. Thus to better understand the identity fusion 

problem, one needs to look at these variables in terms of the origins and types of identity 

information. The following section gives examples of sources producing identity 

information. 

2.1 Information Sources 

In a maritime environment, various surveillance systems, electronic intelligence and 

human observations are examples of information sources available to the commander. 

Two types of source can be distinguished: organic and non-organic sources. When the 
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tactical picture is formed from data gathered by sources under the jurisdiction of the 

commander, these sources are called organic. However,, additional information is 

sometimes supplied by sources outside the jurisdiction of the commander; these are 

referred to as non-organic sources (Gibson, Ref. 5). Output from these sources is 

partitioned according to the type of information they provide; output data may be 

characterized as either positional or identity information. 

Positional information represents the dynamic parameters describing the 

movement associated with an object (contact). This generally includes position, velocity 

and acceleration. Identity information can be defined as declarations, propositions or 

statements that contribute to establish the identity of an object (Refs. 6-7). Equivalently, 

identity information may be seen as information from various sources that helps in 

distinguishing one object from another. Possible values for identity information can span 

the range from sensor signals, to attributes, to identity declarations, as depicted in Fig. 1. 

The sensor signals represent some characteristics of the energy sensed. Attributes such as 

size, shape, degree of symmetry, emitter type, etc. are inferred from these characteristics. 

Identity declarations specify the detected object; in the Canadlian Navy, for example, they 

can consist of a general classification of which the observed object is a member (surface 

combatant), a specific type of ship (frigate), a specific class (City Class) or a unique 

identity (Ville de Quebec). Therefore surface combatant, frigate, City Class and Ville de 

Quebec are all examples of identity declarations. Identity declarations can also include 

information concerning the threat designation of an object: pending, unknown, assumed 

friend, suspect, friend, neutral or hostile. It is noteworthy that for some authors such as 

Filippidis & Schapel (Ref. 8), the term identity refers only to the threat designation of an 

object. Within the context of this study, these threat designations will be classified under 

"threat category," which is, as mentioned earlier, a subdivision of identity declarations. 

2.1.1 Current Information Sources 

Organic sources available on a Canadian Patrol Frigate (CPF) type ship for above 

water warfare include surveillance and tracking radars, Electronic Warfare systems, 

Identification Friend or Foe (IFF) systems, operator intervention and link data exchanged 

by radio links among a group of platforms under the same command. 
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FIGURE 1- Identity Information 
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In general, radars provide positional information in terms of range, azimuth and 
velocity components. Electronic Warfare (EW) systems include the Electronic Support 

Measure (ESM) and the Communication Intercept System (CIS). The ESM system 

intercepts electromagnetic radiation from active emitters in the environment and attempts 

to measure or estimate such parameters as angle of arrival, frequency, pulse repetition 

frequency, pulse width and scan period. These measurements are then compared to 

known characteristics of radar transmitters. The ESM system thus provides positional 
information (azimuth) as well as attribute information in the form of emitter type. It may 

also infer the platform identity (the object which contains the emitter) by matching the 

emitter type to a platform data base. The CIS system is capable of responding to 

programmable tasking to search the communication radio frequencies and provide 

bearings from airborne and surface originated radio frequency signals. The IFF system 

provides information (both in terms of position and identity) about a target when a 

cooperative target has responded to the interrogation. In the absence of an answer, only 

the location that delimits the sector in which the interrogation was performed is available 
but identity declarations may be inferred (Refs. 7, 9). Human intervention occurs when 

the operator of the CIS system listens to the signals and tries to estimate any attribute 

information and/or identity declarations (Ref. 7). 

Intelligence reports and information from communication links are examples of 
non-organic sources from which positional and identity information can be obtained. 
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FIGURE 2- Examples ofinformation Sources and Co:rresponding Outputs 

Figure 2 gives examples of information sources with their corresponding outputs. 

The latter are defined in terms of positional information and identity information, which 

is itself subdivided into three categories: sensor signals, attribute information and identity 

declarations. 

2.1.2 Advanced Information Sources 

To cope with the increasing level of threat, sophisticated sensor processing is 

being developed to provide the commander with more accurate and timely information 

concerning the position and identity of detected objects. Examples of such technology 

advancement follow. 

Some of the most promising approaches to object idc:mtification by active radars 

include: (1) inverse-synthetic aperture radar, which gives a two-dimensional image of an 
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object; (2) radar-signal modulation, in which Doppler modulation of the signal provides 
target-specific information; (3) resonance response to short radar pulses; and (4) high­
range-resolution radars (Ref. 1 0). It is expected that future radar systems will be capable 
of providing attribute information. Also, the position and speed calculated by radars 
could be used to infer attribute information. 

Many countries are involved in the development of advanced naval EW systems 
(Refs. 11-12). The aim of these systems is to integrate all existing onboard electronic 

warfare systems - advanced electronic support measures (ESM), jammers, passive and 
active decoys - to provide a fully coordinated soft kill management. It is anticipated that 
the advanced ESM system will be able to identify the emitter type as well as the platform 
with a good confidence level. 

Infrared imaging sensors afford another option for obtaining identity information. 
These devices sense the electromagnetic spectrum in the 3 to 12 J..tm waveband. They can 
automatically acquire small air objects; however, the classification and identification is 
mostly done manually. Studies are ongoing to automate these two processes (Ref. 13). 

These advanced information sources can and will eventually produce attribute 
information and identity declarations in an autonomous fashion; in that sense, they are 
self- contained. Because of their sophisticated technology, they require comprehensive 
libraries of own and enemy signatures as well as powerful processing capabilities. 

Figure 3 gives a more complete summary of information sources with their 
corresponding outputs. The bold lines indicate the differences between Figs. 2 and 3. A 
considerable amount of information pertaining to each category of identity information 
will be available. Figure 3 is not exhaustive in terms of information sources and 
position/identity information; Its aim is mainly to demonstrate the potentially high 
quantity of identity information that will eventually become available to estimate the 
identity of objects surrounding a ship. 
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2.2 Fusion of Identity Information 

In a situation of intense activity, it would seem impossible to handle manually the 

flow of information pertaining to the position and identity of objects. Automation offers 

a viable solution. Hall (Ref. 6) states that fusion of identity information from multiple 

sources yields both qualitative and quantitative benefits because it takes advantage of the 

relative strengths of each source, resulting in an improV«:!d estimate of the object's 

identity. Quantitative benefits include increased confidence, e.g., higher probability of 

correct identification. 

In order to automate the fusion of identity infomtation, techniques must be 

devised to combine identity information at various levels: sensor signals, attribute 

information and identity declarations. This can be accomplished by focusing on the 

sensor processing units: energy, signal and target processing. 

The energy processing unit is responsible for transfonning the sensed energy into 

a signal, a form more suitable for target detection. Theoretically, the output of this stage 

can be sent to a fusion processor. This procedure is known as the signal level 

architecture, whereby signals from sensors are combined. An example of application is 

the fusion of pixels from imaging sensors to produce a single image (Ref. 14). 



P499630.PDF [Page: 20 of 122]

tl 
t 
II 
i 

.!:! 
s:l .. 
tf 
0 

'.~ 

{ = :J eft 
'? = g i 
z 

UNCLASSIFIED 
9 

Sources of information 

radar 

ESMsystem 

CIS 

IFF 

operator 
intervention 

IRimaging 
sensor 

intelligence 
report 

communication 
link 

Outputs 

positional } ~i ... -· El ct. 
Information .. <:> 

ct.= c-= 

sensor signals 

;· 
S'C: 

attribute ; g 
information .. ct. 

g-~ 
II 

Identity 
declarations 

FIGURE 3- Examples of Advanced Information Sources and Corresponding Outputs 

The signal processing unit is responsible for the detection of objects and 

assessment of the contact's position and attribute information. Again the output of this 

stage can be sent to a fusion processor. This type of fusion is known as central level 

architecture, where attribute information are combined. The procedure is as follows: a 

series of target attributes are extracted from sensor measurements, then an inference is 

drawn between attributes and target types known to possess certain attributes. The 

feasibility of such an endeavor was shown by Donker (Ref. 15), as well as by Begin et a/. 

(Ref. 16), in the specific case of a Canadian Patrol Frigate. Central level architecture was 

also demonstrated for an updated frigate in an A WW (Above Water Warfare) 

environment by Paramax (Ref. 7) and Simard et a/. (Ref. 17). 

Finally, in the target processing unit, the sensor processes many contacts related 

to the same object and estimates information to produce identity declarations. This 

information is then sent to the fusion processor to be combined with other identity 

declarations. This procedure is often called sensor level architecture. The following 
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architecture terminology is also used in the literature: data level, feature level and 

decision level fusion architectures (Ref. 6). 

Figure 4, adapted from Paramax (Ref. 7), displays the three fusion architectures 

providing the structural basis for fusing identity information in the case of 2 sensors. It 

should be noted that the output from each level of procc~ssing represents the three 

categories of identity information depicted in Fig. 1. 

An advantage of the signal level architecture is the minimum information loss 

incurred since the sensor data are fused directly without approximation via attributes or 

identity declarations (Ref. 6). However, only data from identical sensors can be fused. 

Also, its computational requirements are very high due to the complex techniques 

required to fuse signals. The central level approach results in <m information loss from the 

.sensors since sensor data are represented by attributes. Nevertheless, Refs. (7, 16-17) 

have demonstrated the potential of the central level approach. The sensor level fusion 

architecture provides a significant loss compared to signal fusion, since data are 

represented via identity declarations. The information proc1essing for each sensor may 

thus result in a locally rather than a globally optimized solution, because the fusion 

process only combines local decisions in the hope of obtaining the correct identity. 

sensor A 

signal level 
architecture 
(data level) 

central level 

S•!nsor B 

-~;:,.:.::.::.~~----· architecture ......... ...-=.-. 
(feature level) 

Fusion Function 

FIGURE 4- Identity Information Fusion An:;hitectures 
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Nevertheless, the sensor level architecture approach would seem appropriate if the 

available identity information is only provided by self-contained sensors producing 

identity declarations in an autonomous fashion, or by non-organic sources offering 

identity declarations. If one tentatively assumes that this last scenario is viable, studies 

are necessary to explore the possibility of combining diverse identity declarations to 

obtain an estimate of the identity of objects surrounding one or many frigate-type ships. 

Nahim & Pokoski (Ref. 18), Bogler (Ref. 19), Buede et a/. (Ref. 20) and Hong & Lynch 

(Ref. 21) have shown the quantitative benefits of fusing identity information, more 

specifically identity declarations, in examples with limited scope in which less than 10 

different identity declarations were combined. The gains translated into an increased 

level of performance in identifying objects using the sensor level architecture. In this 

document, we propose an approach which offers the capability of combining identity 

declarations pertaining to an A WW environment. The focus of our work will thus be 

on the fusion of identity declarations. 

2.3 Fusion of Identity Declarations 

To look at the problem of combining identity declarations in a rigorous manner, 

the following issues need to be addressed: what identity declarations should be combined, 

how should they be combined and which identity declaration best supports the combined 

evidence? 

2.3.1 What Identity Declarations to Combine? 

As depicted in Section 2.1, the quantity of identity declarations available may 

become quite imposing and diverse. A potential way of organizing identity declarations 

might be to use the NATO standards for representing maritime tactical information 

(ST ANAG 4420, Ref. 22). These standards are in the form of charts that define the full 

range of tactical information required by the operational user at the command level. The 

charts were created to establish the basis for developing a standardized representation of 

spatially displayed tactical data using symbology and colour for NATO maritime units. 
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Figures 5a and 5b offer an adapted version of a tactical information hierarchy for 

surface and air objects respectively; certain levels and entries have been omitted for 

simplicity. The names in the various boxes, which are indicative of the taxonomy used in 

ST ANAG 4420, represent identity declaration entities. These entities illustrate the sort of 

identity declarations provided by various sources which mu.st be combined in order to 

obtain an estimate of an object's identity. The underlined dements symbolize identity 

declaration domains; they do not belong to the STANAG 4420 charts but were added to 

establish a relationship between the domains and their specific entities. 

I Classification 
sur fa~ 

I 
Category 

I l Category 

I I 
Category I combatant non comhGtant non naval 

I Description II Description I H Des•:ription .J ~ Description 
line mine warfare underway rtplenishment merchant 

~ I ~ carrier I I battleship I I cruiser I I destroyer I I frigate .I Des•:ription Description 
fleet support fishing 

L ... L ... L ... L ... r- class ~ Description 

I::~· 
leisure 

~Jiille de Quebec 

r- ... 

L ... -... 

FIGURE 5a- Hierarchy of Tactical Information- Surface Classification 



P499630.PDF [Page: 24 of 122]

UNCLASSIFIED 
13 

Classification 
air 

Category 
military 

Category 
civil 

Category 

Description 
ftxedwing 

Type 
fighter 

Type 
Reece 

Description 
helicopter 

Description 
ftxedwing 

class 

Lunit 
L 

Description 
helicopter 

FIGURE Sb- Hierarchy of Tactical Information- Air Classification 

Type 
ASM 

Type 
SSM 

Type 
AAM 

Some entities can be further divided into class and unit. These categories typify 

the identity of objects at two levels of specificity. The "unit" declaration domain 

characterizes uniquely a detected object. 

Also included in the hierarchy of tactical information is the threat designation; its 

subdivisions are given in Fig. 6. 

I Threat Category I 
J 

pending unknown assumed friend neutral suspect hostile 
friend 

FIGURE 6- Hierarchy of Tactical Information- Threat Category 
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The hierarchy of tactical information delineated by Figs. Sa, Sb and 6 should 

encompass many of the identity declarations provided by the organic and non-organic 

sources of Fig. 3. Furthermore, because this hierarchy is a NATO standard, it provides a 

better base for achieving interoperability in information exchange between nations than 

uncontrolled alternatives. 

2.3.2 How to Combine Identity Declarations? 

Given that a hierarchical structure has been established between various possible 

identity declarations, it would be of interest to combine identity declarations pertaining to 

the same object but provided by various sources in order to obtain a better estimate of the 

object's identity. Before selecting appropriate combination methods, certain issues need 

to be discussed such as sensor level fusion architecture and information uncertainty. 

2.3.2.1 Sensor Level Fusion Architecture 

According to Section 2.2, an appropriate approach to fusing identity declarations 

is to apply the sensor level architecture. This architecture can be adapted to include 

identity declarations inferred by operators as well as the ones deduced by non-organic 

systems. 

Soprce Y 

Fusion Function 

FIGURE 7- Identity Declaration Fusion Process- Sensor Level Architecture 
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Figure 7 provides a simple view of the sensor level fusion architecture, adapted 
from Refs. 6-7. In this approach, each source infers identity declarations independently 
and these inferences are then combined to obtain an estimated identity of the observed 
object. Figure 7 shows three dissimilar information sources capable of providing identity 
declarations. In source X, an organic sensor, the raw input is transformed by the energy 
processing unit, followed by the signal processing unit to obtain attribute information, 
and finally by the target processing unit that estimates identity declarations, as delineated 
in Fig. 4. Non-organic sources such as source Y may directly provide identity 
declarations compatible with the hierarchy of tactical information. Source Z may 
produce information concerning the identity of objects, though operator intervention may 
be necessary to infer declarations. 

An important feature of this fusion architecture is the association process. As 
mentioned earlier, identity of an object is meaningless unless it can be associated with a 
position. Therefore, identity declarations provided by various independent sources must 
be partitioned into groups representing observations belonging to the same observed 
object. Algorithms using positional and identity information must be applied to associate 
declarations pertaining to the same object but originating from different sources. 

As for the main process, called the Fusion Function, it must combine the various 
identity declarations into a single estimated identity declaration. 

2.3.2.2 Identity Declarations: Probabilistic Information 

The target processing unit of the sensor level architecture is able to estimate 
identity declarations by comparing the sensor attribute information with an a priori 
sensor-specific database. This intelligence database may include both identity and 
kinematic target feature parameters. The matching process of the target processing unit is 
uncertain due to random type measurement errors and inference errors. Measurement 
errors may be smoothed out by a signal processing unit as updating is performed. 
Updating is a process whereby consecutive data from the same sensor, sufficiently 
separated in time or frequency to be independent, are combined to produce more reliable 
data. Inference errors occur when the target processing unit infers identity declarations in 
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a form specific to the sensor's domain; an exact match between attribute information and 

a specific element within the sensor's database is quite unlikely. The inference can often 

be of low confidence due to the incompleteness of the data used in the process. As an 

example, Smith & Goggans (Ref. 1 0) state that there are at least two factors that can 

render information incomplete in radars. First, the signal-to-noise ratio (SNR) is 

sometimes insufficient at a given processing gain to obtain the desired measurement. 

Second, even in the absence of noise, the coded signal does not provide sufficient 

information to allow a deterministic solution to the problem. Visual observations provide 

another typical example of uncertain information. There is some level of uncertainty 

associated with this kind of identification due to the fact that the object may be partially 

obscured by fog, cloud or darkness, or may simply be too far away to make a conclusive 

identification (Ref. 8). 

For the purpose of this study, we assume that all sources capable of providing 

identity declarations will do so by attaching to each declaration a quantitative measure of 

uncertainty, such as 'declaration: frigate, measure of uncertainty: 0.6'. As discussed 

earlier, the measure of uncertainty in the case of sensors is associated with the 

measurement and inference errors of the target processing unit. This measure 

corresponds to the probability that the identity declaration and detected object are the 

same or, equivalently, to the probability that declaration i from sources is true: 

Cs,i = P(declaration i from sources matches detected object) 

= P(detected object is i, given that sources declared it to be i) 

= P( declaration i from source s is true) 

In the case of non-sensor information sources, the matching coefficient Cs,i simply 

typifies a subjective confidence appraisal of the declaration. 

2.3.2.3 Uncertainty Fusion Techniques 

Whatever options we choose for combining identi~y declarations, uncertainty 

techniques are necessary. The problem of combining identity declarations is simply one 

of fusing uncertain identity declarations rather than one of inferring identity declarations 

from uncertain information; inference was accomplished by the various sources. Waltz & 



P499630.PDF [Page: 28 of 122]

UNCLASSIFIED 
17 

Llinas (Ref. 4) propose a taxonomy of identity fusion algorithms whereby some methods 

infer and others combine identity declarations. 

For the purpose of representing and combining uncertain information, many 

approaches are available. They can be divided into two categories: numerical and non­

numerical methods. Among the numerical methods, we find the Bayesian paradigm of 

probability theory, the certainty factor approach, the Dempster-Shafer theory of evidence, 

the possibility theory, Thomopoulos's generalized evidence processing theory (GEP), etc. 

Examples of non-numeric techniques are the theory of endorsements, reasoned 

assumption approach, non-monotonic logic, etc. A review of numeric and non-numeric 

methods for handling uncertain information is found in Bhatnagar & Kanal (Ref. 23 ). 

Because we are assuming that identity declarations from various information 
sources are independent from each other and because an inference method is not required 

here, the Bayesian paradigm of probability theory (Pearl, Ref. 2) and the Dempster-Shafer 

evidential theory (Shafer, Ref. 24) are appealing approaches to combining identity 

declarations. The first is one ofthe oldest among all numeric approaches to uncertainty. 

The second, which was conceived as a generalization of the first, is well documented in 
the literature. Both offer simplified algorithms for combining hierarchically structured 

information (Refs. 2-3). These two methods will be described, in turn, in Chapters 3 and 

4 below. 

2.3.3 Decision Criteria 

Once identity declarations have been fused, a decision making technique is 

required to select the identity declaration best supported by the combined evidence 

(Barnett, Ref. 25). Chapter 5 reviews various approaches that can be used in the face of 

knowledge combined by the Dempster-Shafer theory. Decision making will then be 

studied pertaining to information structured in a hierarchical manner. 

Chapter 6 describes the identity declaration fusion function based on the findings 

of Chapters 2 to 5 and provides an example of application in a naval context. 
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3.0 THE BAYESIAN PARADIGM OF PROBABILITY THEORY 

The aim of Bayesian probability theory is to provide a coherent account of how 

belief should change in light of partial or uncertain information. It is thus an ideal vehicle 

for representing and combining uncertain information. Judea Pearl (Ref. 2, p. 29) gives a 

good definition of the Bayesian method: 

The Bayesian method provides a formalism for reasoning about partial 

beliefs under conditions of uncertainty. In this formalism, 

propositions are given numerical parameters signifYing the degree of 

belief accorded them under some body of knowledge, and the 

parameters are combined and manipulated according to the rules of 

probability. 

Before describing the representation and combination rule of the Bayesian 

method, a review of the axiomatic specifications of probability theory will be given, 

followed by two possible interpretations of probability. 

3.1 Axioms of Probability 

The modern axiomatic theory of probability is due to Kolmogorov (Refs. 26-27). 

Let us consider a probability space (O,TI,P) where: 

- 0 is a set, called sample space, listing all possible distinct outcomes that 

may result when a particular experiment is performed. 

- II is a cr- field of subsets of 0 whose elements A II are called events. 

To be a u- field, II must satisfy the following conditions: 

a. n is a member of II, 

b. II is closed under complementation, i.e., 
- -

A II => A II, where A = Q - A 

c. II is closed under countable unions, i.e. 

Ap A 2 , ... , An, ... II=> u;:1Ai II. 
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- P is a probability function or probability measure if it assigns a number 

P(A) to each event A II in such a way that: 

a. P(A) ;?: 0 for all A II. 

b. P(Q) = 1. 

c. If the Ai are pairwise disjoint members of II, then 

P(U:
1
Ai) = :L:

1 
P(Ai), known as countable additivity. 

The above properties of a probability measure P are called Kolmogorov's axioms 

of probability. The following basic consequences are direct results of these axioms: 

'V A II, 0 :::::; P(A) :::::; 1. 

'VA II, P(A) + P(A) = 1. (3.1) 

.These axioms clearly delineate the constraints of the probability measure P. They 

are nevertheless capable of supporting various interpretations of probability. The 

following section gives two particular definitions of probability and shows how each is 

supported by Kolmogorov's axioms. 

3.2 Definitions of Probability 

The first definition of probability that comes to mind is the one based on relative 

frequency. According to that definition, the probability P(A) of an event A stands for the 

proportion of times that this event occurred in a large (ideally infinite) number of 

independent trials carried out under identical experimental conditions. A common 

example is the roll of a balanced dice where the sample space is n = {1,2,3,4,5,6} and the 

field of subsets I1 is generated by the elementary events { 1 } , { 2}, { 3}, { 4}, { 5}, { 6}. 

The probability of obtaining number 1 (event { 1}) is considered to be 116 because the 

relative frequency of number 1 should approach 116 when the dice is rolled a large 

number of times under similar conditions. In a similar fashion, the probability that 

numbers 1 or 2 appear should be approximately 2/6. It is important to note that, in 

practice, the actual observed frequency of, say, the event {1, 2} will vary according to the 

number of times the dice is rolled and the similarity of the experimental conditions. The 

frequency interpretation of probability applies only to problems in which there can be a 
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large number of similar repetitions of a certain process (Ref. 28). Because the frequency 

interpretation of probability satisfies the axioms of probability as delineated by the roll of 

a dice example, probabilities can be viewed, where appropriate, as statistical measures of 

proportions. This definition is known as the empirical interpr•~tation of probabilities (Ref. 

29); it is also called objective probability. 

The second approach to probability views it as a degre:e or measure of belief of an 

individual about the outcome of an experiment. As mentioned by Bacchus (Ref. 29), 

probability then becomes an epistemic concept, related to an agent's beliefs, instead of an 

empirical property related to relative frequency. In this case,. probabilities are subjective 

because different individuals may assign different probabilities to the same event, 

possibly because their information bases are different. However, a single individual 

should assign the same value to the same event (Ref. 30). For example an individual 

might want to quantify his/her beliefs concerning the probability of obtaining number 1 

from the roll of a dice; the sample space is again n = {1,2,3,4,5,6}. According to the 

individual's beliefs, experience and information about the experimental conditions, he/she 

could assign 1/3 to the likelihood of obtaining number 1. Conversely, the likelihood of 

not rolling a 1 would be 2/3. Inasmuch as a person's judgments of the relative likelihoods 

of various combinations of outcomes satisfy the requin~d consistency for his/her 

subjective probabilities of the different possible events to be uniquely determined, the 

subjective interpretation of probability satisfies the axioms of probability (Ref. 28). 

In our study of identity declaration fusion, both objective and subjective evidence 

is available. Objective evidence arises from sensor measurements of features which are 

likely to be corrupted by noise and other distortions (Subsection 2.3.2.2). Therefore the 

description of the expected feature measurements for known objects can be incomplete or 

imprecise. Subjective evidence or judgment regards the oecurrence or existence of a 

particular object in the coverage area, based upon a priori or <~xpert opinion. Information 

sources such as operator intervention, intelligence reports and communication links can 

provide subjective evidence (Section 2.1.1 ). For this reason, both types of evidence will 

be used in our study, as they apply to the Bayesian approach. 
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The Bayesian paradigm is based on three axioms of probability used to describe 
the degree of belief of a proposition (hypothesis), given a body of knowledge (evidence). 

It requires a set of prior probabilities to describe the environment. The evidence 
pertaining to an event is interpreted in light of the prior probabilities. The results of this 

analysis is a set of posterior probabilities (Ref. 31 ). Pearl's definition of the Bayesian 

method, given at the beginning of this chapter, combines the notions of evidence and 
belief in the following manner: a hypothesis is attributed a degree of belief, say p, given 

some evidence. Syntactically, this is written as: 

P(hypothesis I some evidence) = p 

Equivalently, 

P(H I E) =p 

which specifies the belief in hypothesis H under the assumption that evidence E is 
known. P(H I E) is called Bayes conditionalization and is calculated by the following 
formula: 

In a similar fashion, 

and by substitution, we obtain: 

P(H I E) = P(H n E) . 
P(E) 

P(E I H)= P(En H) 
P(H) ' 

P(H I E) = P(E I H) P(H) 
P(E) 

(3.2) 

This formula represents the combination rule of the Bayesian method. Equation 

(3.2) states that the belief in hypothesis H upon obtaining evidence E can be calculated as 
the likelihood, P(E I H), that E will materialize given that H is true, multiplied by the 
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previous belief P(H) in H. P(H I E) is often called the poster.ior probability and P(H) the 

prior probability. The denominator P(E) is a constant which simply ensures that: 

0 ~ P(H I E) ~ 1. 

3.4 Recursive Formulation of Bayes' Formula 

Let us introduce: 

Ei = evidence: declaration of object of classification type i; i = 1, ... , I 

H j = hypothesis: presence of object of classification type j; j = 1, ... , J 

The events E1, ••• , E1 are mutually exclusive, meaning that there is no overlap between 

them. Let us assume that they are also exhaustive, which implies that they completely 

describe the possible events. Likewise, let us suppose that events H1, ••• , H1 are mutually 

exclusive and exhaustive. 

According to Bayes rule (3. 2), we have: 

P(E. I H.) P(H.) 
P(H.I E.) = I J ' J 

J I P(Ei) 
(3.3) 

where P(EJ is given by: 

Equation 3.3 gives the probability that the object present is of classification type j 

given that an object of classification type i was declared. The:: likelihood matrix P(Ei I Hj) 

can be obtained by allowing the source to observe the objects of interest and make its 

declaration often enough to obtain a representative sample (Ref. 1 ). The number of 

elements in the column must be equal to the number of possible declarations. Therefore, 
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~~ P(Ei I HJ.) = 1, V' j E {1, ... , J}. "'-.Jt=l 

Schematically, the format of the likelihood matrix is given in Table I in the special 

case where I = J = 2. 

TABLE I 

Format of the Likelihood Matrix 

s::: 
0 El ·.;::: 

~ -u 
E2 Q) 

Q 

Object present 

HI 

P(E1IH1) 

P(E2!H1) 

'-1-' 
L=l. 

H2 

P(E1jH2) 

P(E2IH2) 

For example, let the likelihood matrix of a given source be: 

(
0.8 0.4) p . H. = 

(Ell ) 0.2 0.6 

If an object of classification type 2, H 2 , is presented to the source, then E 2 will be the 

source response 60 percent of the time, while E 1 will be the source response 40 percent of 

the time. A "perfect" source would be described by the identity matrix (Ref. 18). 

Let us now assume that the source can produce, in a time sequential manner, 

additional information concerning the object in the coverage area. Let E~ and E~ be 

declarations from the source at time 1 and 2. Therefore the conditional probability that 

Hj occurs is assessed by taking into account E: and E~: 
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P(E~ nE~ I H.) P(H.) 
P(H . I E 2 

(') E ~) = P(H . I E 2 E ~) = .. I J J (3 .4) 
J k I J k' I P(E~ (') E:) 

If we assume that E: and E~ are conditionally independent given Hi, then all received 

information can be combined by simple multiplication (Ref: 32). Equation 3.4 can be 

rewritten as follows: 

(3.5) 

where 
J 

P(E~ I ED= LP(E~ 1'1 H 5 IE:) 
s=l 

J 

= LP(E~ IE: n Hs)P(H, IE:) 
s=l 

J 

= LP(E~ I H 5 )P(H5 IE:). 
s=l 

Since P(E~ I H,) = P(E~ I E: 1'1 H
5

) because of conditional Independence, substituting 

I P(E! I Hj) P(Hj) . . 
P(HiiEJ for 1 m (3.5), we obtam: 

P(Ei) 

where P(Hi I E:) is the posterior probability calculated after receiving the first evidence. 

More generally, it follows by induction that: 

P(E! I H.)P(H-1 E!"1 
••• , E~ , E? ) 

P(H. I E! ' E!"1 ' ••• , E~ ' E? ) = l(t) J J l(t·l), 
1
{1) l(o) (3.6) 

J l(t) l(t-l) 
1
{1) I(O) ""'"'] P(E! I H ) P(H I E!"1 ••• E~ E? ) 

L.Js=l I(Q I S l(t·l) ' ' 1{1) ' 1(0) 
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To better appreciate the Bayesian approach to uncertainty in terms of representation and 

combination of information, two simple applications are given in Appendix A (Section 

A. I). 

3.5 The Bayesian Approach to Hierarchical Evidence 

As mentioned in Subsection 2.3 .1, identity declarations originating from various 

sources can be represented in a hierarchical fashion. The examples of Appendix A 

(section A.l) were rather simple in the sense that the evidence was not hierarchically 

structured. To accommodate hierarchical evidence using the Bayesian formalism, J. Pearl 

(Refs. 2, 33) devised a method that calculates the impact of an evidence on the belief of 

every hypothesis in the hierarchy. The definition of a strict hierarchical tree is given 

below, followed by the description of the technique suggested by J. Pearl. A numerical 

example is given in Appendix A (Section A.2). 

3.5.1 Strict Hierarchical Tree 

Let us first define Q = {H~' H 2 , ••• Hn} the collection of possible outcomes or 

hypotheses known to be mutually exclusive and exhaustive. A collection,'¥, of subsets 

of n is chosen to represent specific events or sets that are of interest. A strict 

hierarchical tree can be created with the events of '¥ if each set has a unique parent set 

that contains it. For example let: 

a= fixed wing/military, 

b =helicopter/military, 

c = fixed wing/civil, 

and n ={a, b, c, d, e}, 

d = helicopter/civil, 

e =missile, 

'¥ = {{a}, {b}, {c}, {d}, {e}, {a, b}, {c, d}, {a, b, c, d, e} }. 



P499630.PDF [Page: 37 of 122]

UNCLASSIFIED 
26 

The strict hierarchy given by the elements of \f' is represented by Figure 8, which is itself 

a subset of Figure 5b. Here, some events of \f' have be<::n renamed to simplify the 

terminology; for example the event {fixed wing/military, helicopter/military} is called 

"military" and the event {fixed wing/military, helicopter/military, fixed wing/civil, 

helicopter/civil, missile} is renamed "air". 

Each set is viewed as a node in the tree. The set nor "air" becomes the root of 

the tree, the elementary events or single hypotheses of :Q are the leaves, and the 

intermediate nodes represent the unions of their immediate sm::cessors. 

I air I 
I 

I 

1 military 1 I civil I I weapon 

I 
fixed wing I I helicopter I I fixed wing I I helicopter J I missile 1 

FIGURE 8- Strict Hierarchical Tree of Hypothesis- Air 

3.5.2 Technique Suggested by J. Pearl 

The approach first combines the evidence (E), which is in the form of identity 

declarations, with the current information belonging to the specific hypothesis (H) being 

updated. Secondly, it distributes this new information to the other hypotheses of the tree 

according to a proportionality rule. This last step is necessary because the evidence has 

an impact on the belief of every hypothesis in the hierarchical structure. 

The combination of information is performed using a specialization of the 

Bayesian combination rule to the case of dichotomous alternatives (3.3) (the indices have 

been omitted to simplify the equations): 

O(H I E) = AH O(H) (3.7) 
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where .ILH = P(E I H) is the likelihood ratio, 
P(E I H) 

O(H) = P(H) is the prior odds, and 
P(H) 

O(H 1 E) = P(H I E) is the posterior odds. 
P(H I E) 

Because the evidences are assumed to be conditionally independent, we can obtain from 

(3.7) a recursive equation similar to (3.6), namely: 

where the normalizing factor a~ is given by: 

The likelihood ratio .ILH can be regarded as the degree to which the evidence confirms or 

disconfirms the hypothesis; confirmation is expressed by .ILH > 1 and disconfirmation by 

.ILH<l. The scalar a~ effectively normalizes (3.8) since .ILH behaves like a weight; a 

weight .ILH is given to P(H I E1"1, ... ,E1 ,E0) and a weight of 1 is given to all other 

hypotheses belonging to the same hierarchical level. 

Once the evidence has been combined with the current hypothesis information 

using (3.8), the impact at other hierarchical levels must be evaluated. To this end, Pearl 

(Ref. 2) proposes the following rules, which involve the children of a node H (i.e., the 

nodes directly below it) and the father of node H (i.e., the node directly above it). 

A - Impact on the children of H: 

Each child of H will be modified by a factor of a~ .ILH. The children's children 

and so forth will be modified in a similar fashion. 

B- Impact on the father F ofH: 

P(F I E 1
) =a~ P(F I E 1

-
1, ... ,E1, E 0

) + P(H IE\ E 1-t, ... ,E1
, E 0

)-

a~ P(H I E 1-I_, ... ,E1
, E0

) 

=a~ [P(F I Et-t, ... ,E1
, E 0

)- P(H I Et-t, ... ,E\ E 0
)] + 

P(H I Et' Et-1' ... ,EI' Eo) 
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The father of the father of H and so forth will be modified in a similar fashion by 

substituting the appropriate values for hypotheses Hand F. 

C- Impact on all other hypotheses: 

All other hypotheses will be modified by the normalizing factor ak. 
The previous equations obey the rule stating that each node of the tree should acquire a 

belief equal to the sum of the beliefs belonging to its immediate successors. 

Since the combination technique suggested by P'earl is analogous to the 

combination rule of (3.3), it would have been possible to use (3.8) in the example of 

Appendix A (Section A.l) if the hypotheses had been hierarchical in nature. Figure 9 

provides an example of a strict hierarchical tree of hypotheses: Q = { C, D, I, K, L, M, N, 

0, P}. As before, other letters are used to represent unions of these outcomes, e.g. B = 
{C, D}, G = {L, M} and H = {K, N, 0, P}. A priori probabilities are indicated for each 

set of interest. The numerical calculations are presented in Ap]pendix A (Section A.2). 

c 
.I (.0769) 

FIGURE 9- Example of Combination and Propagation ofBeliefValues Using J. Pearl's 

Technique 

3.6 Comments Concerning the Bayesian Approach 

As described earlier, the Bayesian approach requires that all information sources 

have a complete and accurate knowledge of both the a priori probability distribution and 

the conditional probability matrices. If the sources have little or no knowledge about 
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such things, the Bayesian approach forces them to guess anyway no matter how 

impoverished the information (Ref. 19). Pearl's updating rules are an example of such 

guessing activities. In the event where some or all this information is unavailable, this 

method is at a disadvantage (Ref. 34). 

An additional difficulty associated with the Bayesian approach, is the fact that 

uniform prior probability distributions are often used to represent complete ignorance. 

For this reason, there is no way of distinguishing between instances of ignorance and 

instances in which known information suggests a uniform distribution. Thus, if evidence 

supports proposition (A or B or C) with probability 0.6, it supports individual 

propositions (A), (B), (C) with probability 0.2. As a result, there is a twofold support of 

the disjunction of any two of these propositions over the other. In other words, if 

P(A orB or C) = 0.6 

and 

P(A) = P(B) = P(C) = 0.2 

then, for example, 

P(A or B) = 0.2 + 0.2 = 0.4 = 2 x P(C). 

If the probabilities were assigned on the basis of ignorance, however, then there was no 

evidence to indicate that the disjunct occurrence (A or B) is greater than the singleton of 

(C). The only proposition supported by the evidence was (A or B or C) and there was no 

way of distinguishing between subsets of that event (Ref. 35). 

Finally, another problem connected with probability coding of beliefs in general is 

the requirement that the probability of the negation of a hypothesis A, for example, be 

fixed once the probability of A is known. Because of (3.1), one cannot withhold belief 

from a proposition without increasing belief in its negation (Ref. 36). However a lack of 

support for a hypothesis does not necessarily equate to support in its complement. For 

example, if 

P(A or B or C) = .6 

then, in Bayesian terms: 

1 - P(A orB or C) = P(not (A orB or C))= .4 
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However, it is important to recognize that if the evidence received is incomplete, then the 

above implication between (A orB or C) and (not (A orB or C)) cannot be made; the 

evidence should only support the disjunction, not refute it (Re[ 35). 

3. 7 Conclusion 

Probability theory and the Bayesian paradigm of probability are well formalized 

methodologies. If a priori probability distributions and conditional probability matrices 

are available and if probabilities can be distributed to single dements, then the Bayesian 

approach should be used. However, as we have seen above, the Bayesian approach 

suffers from major deficiencies in a hierarchical context, when fully specified likelihoods 

are not available. Pearl's rules can be applied but may not always lead to an appropriate 

estimation of the posterior probabilities associated with certain nodes of a hierarchy. 

Other problems associated with the Bayesian approach are the coding of ignorance and 

the strict requirements on the belief of a hypothesis and its negation. 

Consequently, the Bayesian approach may not be the ideal technique to fuse 

uncertain information in the context of identity estimation by multiple dissimilar sources. 

We will thus investigate a generalization of the Bayesian approach which does not 

arbitrarily allocate probabilities to the children and parents of a node when this node is 

updated with new information. This technique is based on the Dempster-Shafer theory 

of evidence. 
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4.0 THE DEMSPTER-SHAFER THEORY OF EVIDENCE 

The Dempster-Shafer theory was developed by Canadian statistician Arthur 

Dempster in the 1960's (Ref. 37) and extended by Glenn Shafer in the 1970's (Ref. 24). 

As in the Bayesian approach, this theory supports the representation of uncertain 

information and provides a technique for combining it. The idea behind the Dempster­

Shafer theory is best described by Shafer himself (Ref. 15): 

The theory ofbelieffunctions provides two basic tools to help us make 

probability judgments: a metaphor that can help us organize 

probability judgments based on a single item of evidence, and a formal 

rule for combining probability judgments based on distinct and 

independent items of evidence. 

The Dempster-Shafer technique does not require prior probabilities nor does it 

need to know the capability of each source. Evidence is not committed to any specific 

event or set of events until evidence is gained. Also, it is not required that belief not 

committed to a given proposition should be committed to its negation, nor that belief 

committed to a given proposition should be committed more specifically (Ref. 15). The 

technique actually focuses on the probability of a collection of points belonging to the 

sample space, whereas the classical probability theory is interested in the probability of 

the individual points (Ref. 38). 

The Dempster-Shafer technique has the capability of expressmg Ignorance 

explicitly. For example, if A and B are the only hypotheses in the sample space, then 

P(A) = P(B) = .5 indicates that the beliefs in A and B are the same and no ignorance 

about their occurrences exists. However if the only available information concerns 

hypothesis A with P(A) = .5, it implies that the belief .5 is associated to hypothesis A and 

the other .5 is attributed to the sample space n = {A, B}, thereby delineating the 

Ignorance. 

The Dempster-Shafer technique does not fully abide by the axioms of probability 

as stated in Section 3.1. In particular, this technique is not constrained by equation (3.1) 

but rather supports the following restriction: 
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VA II, P(A) + P(A) S 1. (4.1) 

Equation 3.1 is obviously a particular case of (4.1), which allows the Bayesian 

paradigm to be described as a subclass of the theory of evidence. 

The following sections describe in a more rigorous fashion the theory behind the 

Dempster-Shafer evidential approach in terms of representation and combination of 

evidence. 

4.1 Representation ofEvidence 

4.1.1 Terminology 

In the Dempster-Shafer evidential theory, the terminology is slightly different 

from that used in Probability theory (Ref. 24). The new expressions are in italics. The 

frame of discernment e is defined as an exhaustive set of mutually exclusive events or 

propositions of a particular experiment. It plays the role of the sample space Q (Section 

3.1), so that e denotes a set of possible answers to some question where only one answer 

is correct. We denote 20 the set of all subsets of e. The elements of20, or equivalently 

the subsets of e, form the class of general propositions and include the empty set 0, 

which corresponds to a proposition that is known to be false, and the whole set e, which 

corresponds to a proposition that is known to be true. We will assume throughout our 

discussion that the frame of discernment is finite. 

Let A be a subset of e. The evidential theory differentiates between the measure 

of belief committed exactly to A and the total belief committed to A. The first is 

characterized by the basic probability assignment and the latter by the belief function. 

A function m is a basic probability assignment if it assigns a number m(A) to 

each subset A 2e, in such a way that: 

a.m(0)=0. 
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The quantity m(A) is called A's basic probability number and represents the exact belief 

in the proposition depicted by A. 

A function Bel is a belieffunction if it assigns a number Bel(A) to each subset A 

z8 in such a way that: 

a. Bel(0) = 0. 

b. Bel(8) = 1. 

c. for every positive integer nand every collection, A" A 2 , ••• , An of 

subsets of 8, 

Bel(A1u ... uAn) ~ LBel(Ai)- 2:Bel(Ai nA)+ ... +(-1)n+I Bel(A 1n .. .nA
0

) 

i i<j 

~ :LC-1)'~+ 1BelcnAi). 
Ic{l...n} iel 
1 .. 0 

The quantity Bel( A) is called the degree of belief about proposition A. A belief function 

assigns to each subset of 8 a measure of the total belief in the proposition represented by 

the subset. Here III stands for the cardinality of the set I. The simplest belief function is 

the one where Bel(8) = 1 with Bel(A) = 0 for all A * 8; this function is called the 

vacuous belief function. A belief function can be obtained from the basic probability 

assignment: 

Bel(A) = L m(B), for all A ~ 8. (4.2) 
B~A 

A basic probability assignment can in tum be defined as follows with reference to the 

belief function: 

m(A) = L(-1)1A-BIBel(B), for all A c 8. 
B~A 
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In that sense, a basic probability assignment and belief function convey exactly the same 

information. 

A subset A of e is called a focal element of a belief function Bel over e if m(A) > 

0. The union of all the focal elements of a belieffunction is called its core. 

A belief function Bel is called a simple support function S if there exists a non­

empty subset A c e and a number 0 :::;; s :::;; 1 such that: 

{

0 if B does not contailn A 

S(B) = Bel(B) = s ifB contains A but B * e 
1 ifB = e 

Therefore, a simple support function precisely supports th(~ subset A and any subset 

containing A to the degree s, but it provides no support for the subsets of e that do not 

contain A. If S is a simple support function focused on A, then S is the belief function 

with basic probability numbers: 

a. m(A) = S(A) = s, 
b. m(e) = 1- S(A) = 1 - s, 

c. m(B) = 0 for all other B c e. 

If a simple support function does have a focal element not equal to e, then this focal 

element is called the focus ofthe simple support function. 

A singleton is a subset of the frame of discernment with only a single member. A 

simple support function focused on a singleton is a belief function whose only focal 

elements are the singleton and e. If all the focal elements are singletons, then the belief 

function Bel is called a Bayesian belief function. 

A belief function is called dichotomous with dichotomy {A, A} if it has no focal 

elements other than A, A and e. 
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Another function, the commonality function, can be obtained from the basic 

probability assignment. A function Q is a commonality function if it assigns a number 

Q(A) to each subset A 20 in such a way that: 

a. Q(0) = 1. 

b. L(-1)1A1Q(A) = 0. 
A~;0 

The quantity Q(A) is called A's commonality number. It is the sum of basic probability 

numbers for the set A and all sets which contain it. A commonality function can be 

defined with reference to the belief function: 

Q(A)= L(-1)1
B1Bel(B), forallAc 0 (4.3) 

~A 

or with reference to the basic probability assignment: 

Q(A) = L m(B), for all B c 0. (4.4) 
A~;B 

A belief function can in turn be obtained as follows :from the commonality function: 

Bel(A) = L(-1)1B1Q(B), for all A c 0. (4.5) 
B~;A 

Therefore, the sets of basic probability assignments, belief functions and 

commonality functions are in one-to-one correspondence and each representation carries 

the same information as any of the others (Ref. 24). 

Yet another function conveys the same information as the belief function; it is 

called the plausibility function. Let Bel be a belief function over a frame 0; a function Pl 

is a plausibility function if it assigns a number Pl(A) to each subset A 20 in such a way 

that: 

Pl(A) = 1- Bel(A) (4.6) 
or 
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Pl(A) =:= L m(B), for all A c f) 
AnB,.0 

Pl(A)= L(-l)'BI+tQ(B), fora11Ac0. 
Bs;;;A 

(4.7) 

(4.8) 

The quantity Pl(A) is known as the degree of plausibility of A and expresses the extent to 

which one fails to doubt A. Pl(A) will be zero when the evidence refutes A, and unity 

when there is no evidence against A. From equations ( 4.2) ailld ( 4. 7) we conclude that: 

Bel(A) ~ Pl(A). 

The degree of belief and degree of plausibility summarize the impact of the 

evidence on a particular proposition A in the following manner: the first shows how well 

the evidence supports proposition A and the second reports on how well its negation A 

is supported. This information can be expressed in the f01m of an interval called the 

evidential interval whose length, Pl(A) - Bel(A), can be r,eferred to as the ignorance 

remaining about subset A: 

evidential interval on subset A= [Bel(A) , Pl(A)]. 

If ignorance about subset A is zero, then the Dempster-Sha£er process is identical to the 

Bayesian approach such that Bel( A) = P(A) = Pl(A); if ignonmce about A is equal to one, 

then no knowledge at all is available concerning subset A. 

More generally, the relationship between the Bayesian and Evidential theories can 

be described by the following equation: 

Bel(A) ::5: P(A) ::5: Pl(A). 

Thus, the degree of belief and degree of plausibility on a hypothesis can be seen as the 

lower bound and upper bound on the probability of that hypothesis. A simple numerical 

example is presented in Appendix B (Section B.l) to clari~y the wealth of terminology 

associated with the Evidential theory. 
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As in the Bayesian theory (see equation 3.2), Evidential theory proposes a 

combination rule, called Dempster's rule of combination, which synthesizes basic 

probability assignments and yields a new basic probability assignment representing the 

fused information. The combination rule is known as the orthogonal sum and is denoted 

by$. Basically, this rule corresponds to the pooling of evidence: if the belief functions 

being combined are based on entirely distinct bodies of evidence and the set E> discerns 

the relevant interaction between those bodies of evidence, then the orthogonal sum gives 

degrees of belief that are appropriate on the basis of the combined evidence (Ref. 24). 

Let m 1 and m 2 be basic probability assignments, on the same frame of 

discernment E>, for belief functions Bel1 and Bel2 respectively. If Bel1 's focal elements 

are B., ... , Bk, and Bel2 's focal elements are C1, ••• , Cn, the total portion of belief 

exactly committed to A (A* 0) is given by the orthogonal sum m = m1 E9 m 2 : 

where 

m(A) = K L m 1(BJ.m2 (CJ), 
i,j 

B1nC1=A 

(4.9) 

(4.10) 

The scalar K is a normalizing constant. It normalizes to one the total portion of belief 

exactly committed to A because it may occur that a focal element Bi of Bel1 and a focal 
element Cj of Bel2 will be such that Bin Ci = 0, and 

L m 1(BJ.m2 (CJ) > 0. 
i,j 

B1nc1=0 
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The recourse to K is thus justified by the need to compensate for the measure of belief 

committed to 0. If 1/K. = 0 then the combined belief func:tions are said to be totally 

contradictory and Bel1 E9 Bel2 does not exist or, equivalently, Bel1 and Bel2 are not 

mz 

1 
m2(Cn) ~ 

• 
• 
• 

m 2 (Ci)~ I 

" m2(CI) ~ L 
!' 
' mi 

0 I 

t ... t . .. t 
m I (B I) m t (B i) mt(Bk) 

FIGURE 10- Orthogonal Sum ofTwo Basic Probability Assignments 

combinable. Figure 10 shows the orthogonal sum of two basic probability assignments 

m 1 (Bi) and m 2 (C i); the bold lines delineate the total probability mass committed to 

Bi ncj. 

As mentioned earlier, the result of the orthogonal sum is another basic probability 

assignment; the core of the belief function given by m is equal to the intersection of the 

cores of Bel1 and Bel2 • 

The operation of orthogonal sum of basic probabili~y assignments satisfies the 

following properties (Ref. 39): 
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mi E9 m2 = m2 E9 mi; 

(m1 E9 m2) E9 m3 = m1 E9 (m2 E9 m3 ). 

Therefore, the order of combination is immaterial and the operation allows the pairwise 

composition of a sequence of basic probability assignments such that, if m1 , m2, ... , mP 

are p pieces of evidence, their combination is: 

If mi are a collection of basic probability assignments with focal elements Ai, Bj, Ck, 

D1 , ••• respectively, then 

m(A)=K 

m(0)=0 (4.11) 

l!K=1-

It is interesting to note that the formation of orthogonal sums by Dempster's rule 

corresponds to the multiplication of commonality functions. If the commonality 

functions for Bel1 , Bel2 and Bel1 ffi Be12 are denoted by Q1, Q2 and Q, respectively, 

then 

(4.12) 

where K does not depend on A. The proof of ( 4.12) is given in Appendix B (Section B.2). 
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It is therefore possible to calculate Bel1 ED Bel2 by applying the following procedure: 

a. Find the plausibility functions Pl1 and Pl2 from (4.6): 

Pli = 1-Beli {A). 

b. Find the commonality functions Q1 and Q2 (from a 1transformation of(4.8)): 

Qi(A) = L{-1)1Bf+Ip}i {B). (4.13) 

c. Find the appropriate normalization constant K by: 

cl. Substituting A for 0 in (4.8) such that Pl(0)=1, 
c2. Substituting Q(B) forK Q1(B) Q2 (B) in (4.8), 

c3. Evaluating 1/K= L(-1) 1Bf+IQ1(B) Q2(B). 
0.<B~e 

(4.14) 

d. Find the multiplication of commonality functions using plausibility (from ( 4.8) 

and (4.12)): 
Pl(A)=K L(-1)1Bf+!Ql(B) Q2(B). (4.15) 

0<BcA 

e. Find the belief from the resulting plausibility function. 

In a similar fashion, the formulas all generalize to the case where more than two 
belieffunctions are combined by replacing Q1(B) Q2(B) by Q1(B) ... Qn(B). Appendix 

B (Section B.3) shows a numerical example of Dempster's rule of combination 

4.3 Comments Concerning Dempster' s Rule of Combination 

Various authors have commented on Dempster's rule of combination in terms of its 

justification and normalization inadequacies. Some authors have even proposed 

replacements to his combination rule. These concerns are summarized in the following 

subsections. 

4.3.1 Requirements ofDempster's Rule of Combination 

Dempster's rule of combination is simply a rule for computing a belief function 

from two other belief functions. According to Shafer (Ref 24), this rule reflects the 

pooling of evidence within the Dempster-Shafer theory provided that two requirements 

are met: the bodies of evidence to be combined have to be independent and the frame of 
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discernment must discern the relevant interaction of these bodies of evidence. We will 
argue that within the framework of the current study, Shafer's requirements are met. 

Shafer (Ref 24) states that Dempster's combination rule seems to reflect the 
pooling of evidence provided that the belief functions to be combined are actually based 
on entirely distinct bodies of evidence. He later provides further insight into his 
independence requirement by suggesting that the evidences to be combined must be 
independent when viewed abstractly, i.e., before the interactions of their conclusions are 
taken into account. However, Shafer has not provided a formal definition of 
independence, such as A-'- B 6 P(A r1 B) = P(A) P(B) . 

Voorbraak (Ref 40) has shown, using a simple example (given in Appendix B, 
Section B.4), that even if the evidences seem independent according to Shafer's definition, 
the combination can produce counterintuitive results. 

In the study of identity declaration fusion, if we assume that the information 
sources are independent from one another according to Shafer's definition, then the 
independence requirement becomes much simpler, since no inference process is applied to 
the evidence: 

id fusion example . {
X: declaration from source 1 => A: classification type 1 
Y: declaration from source 2 =>A: classificatiOn type 1 

Here also Belx(A)EFJ Bely(A) will be acceptable, provided that the evidences seem 

independent according to Shafer's definition. In what follows, we will assume that for the 
problem of identity declaration fusion, Shafer's independence requirement is met. 

The second topic to be investigated is the discernment of evidence. Dempster's 
rule should only be used if the frame of discernment e is fine enough to discern all 
relevant interaction of the evidence to be combined. Two definitions are in order to better 
understand the concept of discernment of evidence. 
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Given finite sets 0 and n, a mapping(J):28 ~ 2° is called a refining if the sets 
(J)({B}) constitute a disjoint partition of n: 

Um({O}) = n, 
Of!3 

and the sets (J)(A) are given in terms ofthe (J)({O}): 

(J)(A) = U(J)({O}), for each Ace. 
OeA 

Whenever m :2 8 ~ 2 ° is a refining, n is a refinement of 0, and 0 is a coarsening of n . 

Shafer (Ref 24) states that Dempster's rule of combination may give inaccurate 

results when applied in a frame of discernment that is too coarse. Indeed, if S1 and S2 are 

support functions over a frame 0 that are based on distinct bodies of evidence, and if n is 

a coarsening of 0, then Dempster's rule applied in the frame 0 yields the support 

function: 

However, if it is applied in the frame 0, the support function becomes: 

These two support functions may, in fact, differ. This can clearly be seen in the example 

of Section B.5 (Appendix B). 

4.3.2 Normalization Inadequacies 

A controversial issue in the Dempster-Shafer theory relates to the normalization of 

probabilities and its role in Dempster's rule of combination of evidence (Refs. 41-44). As 
mentioned in Section 4.2, normalization compensates for the measure of belief committed 

to the empty set. However, normalization can lead to highly counterintuitive results 
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because it suppresses an important aspect of the evidence. The following theoretical 

example, adapted from Zadeh (Ref. 42), illustrates this point. 

Let 0 be the frame of discernment of possible diagnoses for patient P: {meningitis, 

brain tumor, concussion}. Suppose that the first observation is: doctor X diagnoses that 

patient P has either meningitis, with probability 0.99, or brain tumor, with probability 0.01. 

The second observation is: doctor Y diagnoses that patient P has either concussion, with 

probability 0.99, or brain tumor, with probability 0.01. Applying Dempster's rule, as 
shown below, leads to the conclusion that the belief that patient P has brain tumor is I. 0 

which is a very unlikely result. 

), 
m2 ( {meningitis}) 

.0 

~ ({brain tumor} 

.01 

) 

m2 ( {concussion}) 
.99 

{meningitis} 

.0 

{} 

.0099 

{} 
.9801 

{meningitis} 
.0 

{} 
.0 

{brain tumor} 

.0001 

{} 
.0099 

{brain tumor} 
.0 

{} {meningitis } 

.0 .0 

{} {brain tumo r} 

.0 .0 

{concussion} {concussion } 
.0 .0 

{concussion} e 
.0 .0 

..... ,.. 

m1 ({meningitis}) m1 ({brain tumor}) m1 ({concussion}) m1 (9) 

.99 .01 .0 .0 

Before Normalization 

m( {meningitis}) = 0. 0 
m({brain tumor})= O.OOOI 
m({concussion}) = o.o· 
m(e )=0.0 
m(0) = 0.9999 

After Nonnalization (IlK= Q.OOOI) 

m( {meningitis}) = 0. 0 
m( {brain tumor}) = I. 0 
m( {concussion}) = 0. 0 
m(e )=0.0 
m(0) = 0.0 
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Yager (Ref 39) proposed an alternative rule of combination which does not 

produce cOunterintuitive results when there is conflict between pieces of evidence. His 
combination rule is denoted by .L. Let m1 and m2 be basic probability assignments, on 

the same frame of discernment 0, for belief functions Bel1 and Bel2 respectively. If 

Bel 1 's focal elements are B1, ••• , Bk, and Bel2 's focal elements are C1 , ••• , Cn, the total 

portion of belief exactly committed to A (A ::f:. 0, 0) is given by the sum m = m1 .l.. m2 : 

m(A) = L m1(BJ·m2 (Cj) 
i,j 

B;nCj;A 

m(0) = 0 

K= L m1(B)·m2 (Cj) 
i,j 

B;nCj=0 

The fundamental distinction between this modified combination rule and 

Dempster's original proposal is that under the latter, via the normalization factor, the 

belief K, which is the total conflict, is proportionally allocated. to the focal elements of m. 

Therefore the contradictory portion is disregarded. With the use of the new rule, the 

conflicted portion of the belief is put back into the set 0, as it regards the contradiction as 

coming from ignorance. Applying Yager's rule to the diagnosis example, we obtain the 

following results which seem intuitively more plausible: 

Before applying Yager's rule 

m( {meningitis}) = 0. 0 
m({brain tumor})= 0.0001 
m( {concussion}) = 0. 0 
m(e )=0.0 
m(0) = 0.9999 

After applying Yager's rule 

m( {meningitis}) == 0. 0 
m( {brain tumor}) = 0. 000 I 
m( {concussion}) = 0. 0 
m(e) = 0.0 + 0.9999 = 0.9999 
m(0)=0.0 



P499630.PDF [Page: 56 of 122]

UNCLASSIFIED 
45 

Yager's rule, applied to the example of Appendix B (Section B.3), produces similar 

results to those obtained by Dempster's rule. However, Inagaki (Ref. 45) notes that 

Yager's rule is not associative, in that results are dependent on the order in which data are 

received. This makes Yager's rule considerably less attractive. 

Another option proposed by Yager (Ref. 39) is not to modify Dempster's rule, but 

rather to suggest when the latter should be used in order to avoid undesired results. Its 

methodology considers the combined basic probability assignment m based on p pieces of 

evidence to be a good and informative combination if it satisfies the following, rather 

subjective, conditions: 

a. In formulating m, consider all the information available (m1 , m2 , ... ,mP). 

b. The information used to obtain m must not be highly conflicting. 

c. The specificity of m is high. 

d. The entropy of m is high. 

Specificity and entropy measure the amount of information contained in a basic 

probability assignment. Specificity, Pm, measures the degree to which the basic probability 

numbers are allocated to focal elements small in size; it provides an indication of the 

dispersion of the belief. The higher P m, the less diverse is the evidence. If we assume that 

m is a belief structure defined over the set X and 0 has cardinality n, then: 

Pm = L:m(A)/nA, nA =CardA. (4.16) 
AcX.Aot0 

This quantity is characterized by the following properties (see proof in Appendix B, 

Section B.6): 

a. Yn~pm~1, 

b. P m = Yn iff m is vacuous, 

c. P m = 1 iff m is a Bayesian belief function. 
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Entropy, Em, measures the degree to which the basic probability numbers are 

allocated in a consonant manner, that is, not allocating mass among disjoint sets. It thus 

provides a measure of the dissonance of the evidence. The lower Em, the more consistent 

is the evidence. If m is a belief structure defined over the set X, then the entropy measure 

is given by: 

Em=- :Lm(A) ln(Pl(A)) = :Lm(A) Con(Bel,BelA), 
A eX A eX 

where Con(Bel, Bel A) = -ln(1- k) and k = L m1 (Ai) m2 (B j). 
i,j 

AlnBj=0 

(4.17) 

The entropy measure is characterized by the following properties (proofs in 

Appendix B, Section B. 7): 

a. Ifm is a Bayesian belief function, Em reduces to the Shannon entropy measure, 

b. 0 5: Em 5: ln(n), 
c. Em = 0 if Ai n Aj = 0 for each pair offoc3.1 elements, 

d. Em= ln(n) iffm(AJ = Yn for i=1, 2, ... ,n. 

Entropy can also be described by Hm, which is a transformation of Em : 

= Pl(A
1
)m(A1) X Pl(AJm(Az) X ••. = TIPl(A}m(A). (4.18) 

Ac:9 

It can be shown that 

a. 1/n ::;: Hm::;: 1, 

b. H m = 1 if A i n A j * 0 for each pair of focal elements, 

c. Hm = 1/n iffm{ BJ =lin for i=1, 2, ... ,n. 
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Thus the two measures P m and Hm are such that the closer they are to unity, the 

more informative the evidence. The degree of informativeness of a basic probability 

assignment m can be obtained from: 

(4.19) 

4.4 Computational Complexity 

One drawback of the Dempster-Shafer Evidential Theory is the long calculation 

time required by its high computational complexity. Because the combination rule 

produces basic probability numbers on the subsets of 0 , the calculations are time 

exponential. In comparison, the Bayesian approach provides probability statements on the 

elements of 0. Therefore, if 0 consists of 4 possible points/outcomes, the definition of a 

probability function on 0 requires the assignment of probability to 4 points, whereas the 

definition of the Dempster-Shafer basic probability assignment requires the definition of 

m(A) for 24 =16 subsets A of®. 

Three categories of options are available to reduce computational complexity. The 

first approximates the belief function, the second treats simple support functions instead of 

belief functions, and the last one separates the frame of discernment into smaller, more 
manageable frames, one for each set of mutually exclusive hypotheses. Table II 
summarizes the various options available for reducing the computational complexity of 
Dempster's combination rule. 

Voorbraak (Ref. 46) has defined a Bayesian approximation of a belief function and 

he has shown that combining the Bayesian approximations of belief functions is 

computationally less complex than combining the belief functions themselves; the 

computational time will be reduced from exponential to polynomial. This approach, 

however, is only appealing when one is interested in final conclusions about the elements 

of®; in the study of identity declaration fusion, we are mostly interested in subsets of®. 

J. Barnett (Ref. 47) demonstrated that if each piece of evidence consists of simple 

support functions focused on singleton propositions and their negations, computational 
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time will be reduced from exponential to linear. Another option was proposed by Gordon 

& Shortliffe (Ref. 48). It is based on the assumptions that (i) each piece of evidence 

consists of simple support functions focused for or against subsets of 0 instead of 

singletons, and that (ii) the subsets of 0 can be structured in a strict hierarchical tree. This 

method builds on Barnett's approach while permitting hierarchical relationships among 

hypotheses; its aim is similar to that ofPearl (Section 3.6.2). 

TABLED 

Options to Reduce Computational Complexity of Dempster's Rule 

Author(s) Technique Calculation 

Voorbraak (Ref. 46) Bayesian approximation of Polynomial time 
belief function JlrO_Q_ortional to I e I 

Barnett (Ref. 4 7) Simple support function Linear time proportional to 
focused on sif!gleton lei 

Gordon & Shortliffe Simple support function Linear time proportional to 
(Ref. 48) using subsets of e, evidence lei 

hierarchically structured 
Shafer (Ref. 49) Belief functions carried by Proportional to size of sibs 

the field of subsets 
generated by children of 
node, evidence 
hierarchically structured 

Shafer & Logan (Ref. 3) Simple support function Linear time proportional to 
focused on a subset of 0 or number of nodes in the tree 
its complement, and carried 
by the field of subsets 
generated by children of 
node, evidence 
hierarchically structured 

However, combining negative evidence leads to computational difficulties because 

the intersection of the complements of nodes may fail to correspond to a node or its 

complement. In such a case, an approximation is suggestc~d by the authors but this 

approximation restricts the usefulness of the plausibility measure. The algorithm can be 

implemented in a form which is linear in the number of nodes in the tree. 
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Cleckner (Ref 35) offers a comparative study in terms of memory requirements 
and computational complexity in which the standard Dempster-Shafer combination rule is 
compared with Barnett's algorithm and the alternative due to Gordon & Shortliffe (Ref 
47). Cleckner concluded that when dealing with simple support functions focused on 
singleton hypothesis, Barnett's technique is the least computer intensive of the three. 

The last category of options, which also assumes that evidence is hierarchically 
structured, was proposed by Shafer (Ref. 49). He suggested that the belief functions to be 
combined should be carried by a partition P of 0, which has fewer elements than 0. This 
is done by separating the frame of discernment into smaller more manageable frames, one 
for each set of mutually exclusive hypotheses. Of course, once the elements have been 
separated into multiple frames, items from different frames can no longer be compared 
since they then pertain to different belief functions. Shafer's first approach combines 
belieffunctions each ofwhich is carried by the field of subsets generated by the children of 
a particular node. His second approach combines simple support functions focused on a 
subset.of0 or its complement (Shafer & Logan, Ref 3). The latter uses the same type of 
evidence as considered by Gordon & Shortliffe (Ref. 48), while avoiding some of its 
shortcomings. This approach is detailed in the following section. 

4.5 Dempster's Rule for Hierarchical Evidence, Revisited by Shafer and Logan 

The Shafer & Logan technique reduces computational complexity in three ways: 

a. By using hierarchical evidence that reduces the number of admissible subsets; 
b. By using simple support functions focused on a subset of 0 or its complement; 
c. By reducing Dempster's rule of combination to a series of combinations 

involving smaller frames of discernment. 

The third item is of prime importance. By reducing the frame of discernment 0 
into smaller frames of discernment, the complexity is reduced because the smaller frames 
have less elements than 0. However, a constraint has to be imposed for the combination 
to be permissible in the smaller frames: the simple support functions and their combination 



P499630.PDF [Page: 61 of 122]

UNCLASSIFIED 
50 

to be permissible in the smaller frames: the simple support functions and their 

combination must be carried by the field of subsets generated by the children of a node. 

To understand this constraint, certain terms will be defined in the following subsections. 

4.5.1 Partition of a Frame of Discernment 

A partition of a frame of discernment 0 is a set of disjoint non-empty subsets of 

0 whose union equals 0; such a partition P can itself be regarded as a frame of 

discernment. P • represents the set consisting of all unions of dements of P. For example, 

if 0 = {a, b, c, d} and P = {.1l'p.?l'2 } with.1r1 ={a} and .1r2 = {b,c,d}, then P • = { 0 ,{a}, 

{b, c, d}, {a, b, c, d} }. 

As defined in Subsection 4.3.1, partition P, is a refinement of partition P2 if for 

every element P, in P, there is an element P2 in P2 such that P1 c P2 • For example, let 

P, and P2 be two partitions of®; let also;r1 ={a}, ;r2 = {b,c,d} and .1r3 ={a, b, c, d}. 

If~= {.1l'p.?l'2 } ,~· = {0, {a}, {b, c, d}, {a, b, c, d}} andP2 = {tr3 }, P; = {0, {a, b, c, 

d} }, then P, is a refinement of P2• 

If all the subsets of a belief function Bel are included in p•, the belief function Bel 

ts then said to be carried by P. For example, let P = {.1r1 ,.1r2 }with.?l'1 ={a} and 

.1r2 = {b,c,d} and the belief function Bel be represented by the basic probability 

assignments: 

m({a, b}) = 0.5 

m({a, b, c, d}) = 0.5. 

The belief function Bel is not carried by P since the subset { a,b} p• where the latter is 

defined as before. 

Shafer & Logan have shown that if Bel, and Bel2 are both carried by P, then 

Bel1 EB Bel2 will also be carried by P. This result has an important impact on the 

combination of evidence when using, for example, commonality functions as described in 

Subsection 4.2.1. In effect, this conclusion may be transposed to (4.13), (4.14) and (4.15) 

if it is assumed that Bel1 and Bel2 are both carried by P and that A e p•. One finds: 
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Qi(A) = L(-l)IBI""+lpii(B) 
BEP. 
0><Bs;;A 

1/K= L(-l)IBIJ'+lQl(B) Q2(B) 
0otBEP• 

Pl(A) = K L(-l)IBIJ'+lQl (B) Q2 (B) 
BEP• 
elo<Bs;;A 

(4.20) 

where IBIP denotes the number of elements of P contained in B. The end result is that the 

plausibility function PI for Bel 1 E9 Bel 2 can be computed, because the combination is 

carried by P. 

To say that Bel 1 E9 Bel 2 is carried by Pis equivalent to saying that P discerns the 

interactio~ between Bel 1 and Bel 2 • The topic of discernment of evidence was introduced 

in Subsection 4.3 .1. We say that P discerns the interaction relevant to itself if: 

4.5.2 General Concepts 

Shafer & Logan (Ref 3) have introduced a new terminology and notation that will 

greatly facilitate the understanding of the combination process. 

Let ~ be the collection of all nodes below 0. As illustrated in Figure 11, ~ is 

represented by {C, D, E, F, G, H, I, J, K}. As in Subsection 3.6.2, D is said to be the 

child of C, and C is D's parent. The set of nodes that consists of all the children of a 

given non terminal node is called a sib; the sib .e c consists of the children of C. 
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FIGURE 11 - Hierarchical Evidence to Illustrate 9l and R. c 

It is assumed that for each node A in 9l , there is a single dichotomous belief 

function BelA with dichotomy {A, A}. Furthermore, BelA (A) and BelA (A) are both 

strictly less than one, but either, or both, can be zero. 

For each node A in the tree, Bel~ denotes the orthogonal sum of Bel 8 for all 

nodes B that are strictly below A. 

For each node in 9l, Bel~ denotes the orthogonal sum of Bel8 for all nodes Bin 

9l that are neither below A nor equal to A. 

For example, from Figure 11: 

and 

Bel; =Bela EB BelH EB Bel~ 
=BclaEBBclHEBBcl1 EBBcl1 EBBclK 

If we generalize to E> , we have 

Bel~ =Bel~ EB Belc EB Bel~ 
or, equivalently 

Bel~ =Bel;$ BelF $Bel~. 
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In terms of this nomenclature, the aim of Shafer & Logan's approach amounts to 

calculating the values of all the nodes A E 9l : 

Bel; = E9{Bel AlA E 91}, 

or, equivalently 
(4.21) 

Using the definitions of partition of a frame of discernment and the concept of discernment 

of evidence from Subsection 4.5.1, Shafer & Logan have shown that: 

a. if P is a partition of e and P E 9l n P , then (Bel;) P = (Bel;) {P,P}, 

b. if P is a partition of e , A E 9l and A E P then (Bel~) P = (Bel~) {A,A}, 

c. if P is a partition of e , then P discerns the interaction relevant to itself 

among the belief functions {Bel; I P E 9l n P} and {Bel PIP E 9l n P} . 

From the characteristics of a partition of a frame of discernment and the definition 

of Bel~ , we obtain, say, for a partition f. A u {A} : 

(Bel~)lAu{A} = EF>{(BelB)tAu{A} EF>(Bel~)tAu{A}IB ERA}. 

By a. above, this is equivalent to 
~ ~ 

(Bel A) tAu{A} = EF>{BelB EF> (Bel B) {B,B} IB E .e A}. (4.22) 

Note that if the element B of .e A is a terminal node, then Bel~ is vacuous and the 

orthogonal sum Bel B EF> (Bel~) {B,B} reduces to Bel B • Equation 4.22 states that in order 

to determine the degrees of belief of the children of A resulting from all the evidence 

bearing on nodes below A, it is sufficient to consider each child separately. This 

represents the mechanism for passing up belief values between different levels of 

hierarchy; it satisfies the intuitive argument to the effect that any evidence confirming a 

node should also provide evidence confirming its parent (Ref. 50). 
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Generalizing for e , we obtain: 

The partition becomes fa instead of fa u {0}, sincefa u {0} c f 8 . 

(4.23) 

A statement even stronger than statement c. above is: if A is a non terminal 

element of 91 , then the partition fA u {A} discerns the interaction relevant to itself 

among Bel i, Bel A and Bel~ . Therefore, exploiting ( 4.21 ) for A E 91 and the last 

statement, we obtain: 

(Bel~) !A u{A} = {(Bel i) LA u{A} ffi (Bel A) iA u{A} ffi (Bel~) !A u{A}} 

or, equivalently: 

(Bel~) LA u{A} = {(Bel~) LA u{A} E9 Bel A E9 (Bel~) {A,A}} (4.24) 

since Bel A is carried by fA u {A} and (Bel~) tA u{A} = (Bel~) {A,A} from statement b. 

Equation 4.24 states that the evidence from above A and down other branches affects the 

degree of belief of the children of A only if the degree· of beli·ef is for or against A itself. 

This is the mechanism for passing, confirming and disconfirming evidence to the lower 

levels of the hierarchy. 

4.5.3 The Shafer-Logan Algorithm 

The algorithm proposed by Shafer & Logan (Ref 3) is based on the concepts 

described in the previous subsection and Appendix C. The combination of hierarchical 

evidence is accomplished in four stages. 

At stage 0, evidence is received for a specific node in the form of a simple support 

function or dichotomous function. This evidence is first combined with the existing belief 

value associated with the node using Dempster's rule of combination. In this case the 

combination is easy to calculate, since the belief functions being combined are simple 
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support functions or dichotomous functions focused on the same node. The result of this 

. simple combination is a dichotomous belief function which is then propagated through the 

hierarchical tree using the Shafer-Logan algorithm stages 1 to 3 below. 

At stage 1, the dichotomous belief functions attached to terminal nodes are 

combined to find degrees of belief for and against their parents; the same is done to the 

parents' parents and so on, until there is a dichotomous belief function attached to each 

child of A to obtain the values of (Bel~)tAu{A}. This is performed by (4.22). This stage 

calculates degrees of belief by moving up the tree. 

At stage 2, we obtain the values of each (direct) child of e :(Bel~),., using 

(4.23). 

At the last stage, the degree of belief of each node is reevaluated to take into 

account the influence of other nodes using (4.24); this process calculates the degrees of 

belief by moving back down the tree. Figure 12 illustrates the algorithm's flow chart. 

The implementation of the algorithm is not straightforward. The combination of 

dichotomous belief functions is performed using the commonality functions of(4.20). The 

formulas used to implement the algorithm are reproduced in Appendix C (Section C.1 ). 

The amount of arithmetic involving a particular node depends linearly on the 

number of daughters of the node. Furthermore, the computational complexity of the 

algorithm is linear in the number of nodes in the tree. This is the case because the belief 

functions being combined are simple support functions focused on nodes or their 

complements. However, if we were to combine belief functions carried by the field of 
subsets generated by the children of a node, more precisely by a partition £A u {A} (such 

as suggested by Shafer, Ref. 49), then the amount of arithmetic would become exponential 

in the sib size but remain proportional to the number of sibs. 

Note that a special case occurs when the belief functions are Bayesian, that is, 

when the belieffunction BelA carried by £Au {A} satisfies: 
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START 

Choose a sib of terminal nodes 
and let A denote its mother 

Choose the top most node A 

Calculate Bel A Ell (Bel~ )
1
A,Al 

Calculate for each B in I. A 

Bel;(B), Bel;(B) 

END 

Stage 1 
up the tree 

J Stage 2 
top of the tree 

Stage 3 
down the tree 

FIGURE 12 - Flowchart for the Shafer-Logan Algorithm 
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BelA (BIA) +BelA (BIA) = 1 

BelA (BIA) +BelA (BIA) = 1 

for every element B of the field ( R. A u {A})* ; the arithmetic is then linear in the sib size. 

This case is specifically the one devised by J. Pearl and described in Subsection 3.6.2. 

The Dempster combination rule for combining belief functions, as described in 

Subsection 4.2.1, was implemented on an HP workstation using the C++ language. The 

Shafer-Logan algorithm for combining simple support functions focused on a subset of e 
or its complement was also implemented. Two examples are provided in Appendices. The 

first illustration (Appendix C, Section C.2) shows that if the belief functions are Bayesian, 

then Dempster's combination rule gives similar results to those obtained by Pearl's 

algorithm. This example uses the strict hierarchical tree illustrated in Figure 9 of 

Subsection 3.6.3. The a priori probabilities are indicated for each set of interest. For 

example, 

m({B}) = m({C, D}) = P(BIEJ = 0.1538. 

Here, the Shafer-Logan algorim can m(2Unot be applied since the a priori probabilities are 

not dichotomous in nature. 

The second example (Appendix C, Section C.3) shows the propagation effect of 

combining dichotomous belief functions using the Shafer-Logan algorithm. This example, 

· in which 6 sets of evidence are combined, illustrates the propagation effect of the Shafer & 

Logan algorithm. The same strict hierarchical tree as above is used. The example is 

composed of 6 steps, at which additional evidence is received for a specific node in the 

form of a simple support function or dichotomous function, and then combined. The new 

belief (Bel) and plausibility (PI) values are calculated for each node. Figures 13 to 18 show 

the results of the Shafer-Logan algorithm after adding evidence from step 1 to 6 

respectively. 
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(0., .5) 

FIGURE 13 - Results From the Shafer-Logan Algorithm - Step 1 

STEP 2: 
m({H})= .5 
m(B) = .5 

(0., .5) 

FIGURE 14- Results From the Shafer-Logan Algorithm- Step 2 
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A plausibility of 1 for {N} implies that so far no evidence can refute {N} whereas a 

plausibility of .5 for {L} (for example) is obtained through evidence m(0) = .5. 

The evidence m( {H}) = . 5 does not influence the children of {H} (in terms of belief and 

plausibility) but influences the belief of the father of {H} and the plausibility of the other 

nodes. 

STEP 3: 
m({F})= .9 
m(E>) = .1 

(0., .025) (0., .025) 

(.5, l .) (0., .5) (0., .5) 

FIGURE 15- Results From the Shafer-Logan Algorithm- Step 3 

In a similar fashion, a strong evidence for {F} does not affect the belief of {B}; however, 

it diminishes the plausibility of {B}. 
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(0., .05) 

FIGURE 16- Results From the Shafer-Logan Algorithm- Step 4 

As predicted, the evidence against {F} (m({F})= .5) affec:ts the children of {F}. 

STEP 5: 
m(~B}) = .99 
m( F}) = .01 
m~"') = .0 

(0., .83) (0., .83) 

FIGURE 17 -Results From the Shafer-Logan Algorithm- Step 5 
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The contradictory evidences greatly modifies the belief and plausibility of {B} and 

{F}, when combining the two dichotomous belief functions focused on the same nodes B 

and F (m({B}) = .99, m({F}) = .01 with m({B}) = .02, m({F}) = .95, m(0) = .03). 

Dempster's rule calculates a small normalizing constant (K = .06), indicating conflict. It is 

interesting to note that this evidence is dichotomous since {B} = {F} . 

STEP 6: 
m({B})= .05 
m(e) = .95 

(0., .84) (0., .84) 

(.08, .16) (0., .08) (0., .08) 

FIGURE 18- Results From the Shafer-Logan Algorithm- Step 6 

The small evidence for {B} slightly modifies the belief and plausibility of {B}; the big 

uncertainty is distributed amongst the other nodes. 
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5.0 STATISTICAL DECISION MAKING 

An important element to take into consideration in the design of an identity 

declaration fusion function is the decision making process required to select the identity 

declaration which best supports the combined declarations (Barnett, Ref. 25). Statistical 

decision making is necessary since, after fusion, the resulting hierarchical structure may 

contain many identity declarations with a non-null confidence: value. Because decisions 

are subjective, the decision maker will undoubtedly depend on his or her own judgment as 

well as information collected from various sources. The fusion function should still 

suggest to the decision maker the "best" candidate or candidates according to 

predetermined decision rules. A number of factors are involved in the choice of the 

decision rules to be used (Nahim & Pokoski, Ref. 18) : 

- rule complexity (if the computational time required to make a decision is too 

high, the process becomes useless), 

- confidence level (decision rules are made on a probabilistic basis), 

- fusion technique used to combine uncertain information (for example the 

Dempster-Shafer approach produces belief and plausibility values instead of 

single probability values), 

-type of application (the application environment can dictate decision rules). 

Before analyzing the specific needs of an identity declaration fusion function, 

various approaches will be discussed concerning decision techniques in the face of 

knowledge combined by the Dempster-Shafer theory. Then, decision making will be 

studied pertaining to information structured in a hierarchical manner, in order to provide a 

decision making approach to the identity declaration fusion function. 

5.1 Statistical Decision Making Based on the Dempster-Shafer Representation 

The Dempster-Shafer theory has. been applied in various contexts. However, no 

general method is acknowledged for classification (decision making) based on basic 

probability assignments (Liu & Yang, Ref. 51). It is important to note that the Dempster-
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Shafer belief calculus provides two measures for decision making: the belief (Bel) and 

plausibility (PI) measures. Different approaches have been studied based on Bel and/or 

PI; these will be briefly discussed. 

Selzer & Gutfmger (Ref. 52) have proposed a method based on the belief measure 

Bel accompanied by heuristic rules to choose the best alternative among many possible 

alternatives: 

-the best alternative must have the maximum basic probability number, 

- the difference in basic probability numbers between any two alternatives 

must be above a specified threshold. 

For their classification problem, Liu & Yang (Ref. 51) also proposed a method 

based on,the belief measure Bel, but added more rules for selecting the best alternative: 

alternative 

- the best alternative must have the maximum basic probability number, 

- the difference between the basic probability number of the best 

and the other alternatives should be larger than a threshold, 
-the basic probability number for uncertainty m(0), should be less than a 

certain threshold, 

- the basic probability number for the best alternative should be larger than 
the basic probability number for uncertainty m(0). 

If the constraints are not met, the method does not propose a best alternative. 

In the Paramax (Ref. 7) study, a modified Dempster-Shafer approach was used to 

fuse primarily attribute information in order to obtain identity classification. The 

decision rule proposed was based on the maximum basic probability number of an 

alternative chosen among certain important alternatives which were of tactical or strategic 

interest. Therefore, not all alternatives were candidates for being the best alternative; the 

subset of candidates was selected according to the scenario and mission at hand. 

Voorbraak (Ref. 46) suggested the use of the belief interval [Bel( {a}), PI( {a})] for 

decision making. As there is no unique way of ordering the belief intervals with respect to 

their degree of certainty, he proposed four orderings induced by the following rules: 
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I. The minimal ordering s;min is defined by [x,y] smin [x',y'] iff ysx' 

2. The ordering by average :Sav is defined by [x,y] s.v [x',y'] iff 

(x+y)/2 s (x'+y')/2 

3. The belief ordering :SBei is defined by [x,y] :Sl3e1 [x',y'] iff xsx' 

4. The plausibility ordering :Sp1 is defined by [x,y] :Sp1 [x',y'] iff ysy' 

The choice for minimal ordering corresponds to a rather cautious approach to the ordering 

of elements with respect to their certainty, whereas the choice for the ordering by average 

appears rather audacious in nature. The belief ordering simply corresponds to the 

maximum basic probability number. The plausibility ordering can play an important role 

since it indicates the extent to which the belief may vary. For example, 

[Bel({a}), Pl({a})] = [0.5, 0.6] indicates that prob({a}) can vary between 0.5 

and 0.6, but 

[Bel({b }), Pl({b })] = [0.4, 0.8] indicates that prob({b}) can vary between 0.4 

and 0.8. 

Therefore, even if Bel( {a}) > Bel( {b} ), the evidence suggests that prob( {a}) cannot be 

higher that 0.6 whereas prob( {b}) could be as high as 0.8. 

Voorbraak (Ref 46) does not favor one ordering over the other but mentions that 

the plausibility ordering can play a dominant role in the decision making process. 

Therefore in many situations, if using the belief ordering, he suggests that the plausibility 

of the best alternative be higher than the plausibility of all the other alternatives. 

Barnett (Ref 25) also adheres to the idea that the measures Bel and PI should be 

used to assist decision making. However, he concentrated his own efforts on problems 

where most elements of 0 have basic probability numbers equal to 0. This occurs when a 

large number of evidence sources are not available. In such a case, he argues that Pl 

generally provides some discrimination even when the evidence is sparse. Therefore, he 

suggests that PI is a more robust guide to decision making than is Bel. This concept was 

applied by Altoft (Ref. 53) to a classification problem in which his main decision criterion 

was to choose the alternative with the highest plausibility value, reserving the belief value 

for tie breaking. 
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5.2 Statistical Decision Making Based on the Dempster-Shafer Representation using 

a Hierarchical Structure 

When dealing with a hierarchical structure, the decision making techniques of the 

previous section cannot be directly applied because the belief of a parent will always be 

equal to, or higher than, the belief of each of his children. Therefore, one cannot simply 

rely on the maximum value of belief. For example, in Figure 18, the belief of {F} is 

always higher than the belief of {G}, {H} or {I}. Similarly, the belief of {H} is higher 

than that of {J} or {K}. Also, the plausibility of a parent will always be equal to, or 

higher than, the plausibility of each of his children. An exception to this rule would be if 

the decision maker were interested only in the leaf nodes (the elements of the frame of 

discernment 0 ), in which case the hierarchical structure would be superfluous. 

Furthermore, an important aspect that should not be forgotten in military 

applications, as already mentioned by Liu & Yang (Ref. 51) and Paramax (Ref. 7), is the 

fact that decision making is scenario and mission dependent. 

What we propose, therefore, is a semi-automated approach based on the belief and 

plausibility values. It is called semi-automated because threshold values will be applied to 

the belief and plausibility measures. However, the final decision will be taken by the 

decision maker, because he/she remains an important part of the process and because the 

choice of the final identity is typically scenario and mission dependent. The decision 

making approach proposed is as follows: 

- select all alternatives with a plausibility value greater than a certain 
threshold Tp1 ; 

- plot the chosen alternatives according to hierarchical structure and 

indicate for each node its belief value; 

- add to the graph all the nodes directly below e with their belief values. 

Based on the graph constructed by this decision approach, the decision maker can 

select the best alternative according to the highest belief value, or the hierarchical level of 

interest or any other criteria. The plausibility value is not included in the graph as it is not 
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deemed to be essential to the decision making process. To illustrate the approach, the 

decision technique will be applied to the example of Section C.3 (Appendix C). 

The plausibility threshold Tp1 is chosen equal to .6. At each step, the decision 

technique creates a graph from which the decision maker can select the best alternative 

according to his/her needs. If no nodes other than the direct children of ® appear in the 

graph, then no alternative has a plausibility value higher than the threshold Tp1 and no 

decision can be taken. The results are as follows: 

STEP 1: 

.5 

.5 

.5 

STEP 2: 

.75 

.75 

.5 
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.975 

.75 

.5 

.95 

.73 

.49 

.17 
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As indicated in Chapter 4, the contradictory evidence at step 5 greatly modifies the 

belief of {B} and {F}. The decision technique reproduces the effect of this contradictory 

evidence. 
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6.0 IDENTITY DECLARATION FUSION FUNCTION 

We are now able to provide an identity declaration fusion function based on the 
various concepts studied in the previous chapters. 

The first section describes the identity declaration fusion function and the second 
section provides an example using the identity declaration fusion function in which identity 
declarations will be fused and the decision making process applied. 

6.1 Description of the Identity Declaration Fusion Function 

Within the framework of our identity information fusion study, various hypotheses 
were made and delineated in the previous chapters; the two hypotheses which bear the 
most impact on the choice of the fusion approach are as follows: 

1. The evidence provided by the various information sources are independent 

according to Shafer's definition. 

2. Probabilistic information is only available for some of the events associated 
with 0, such that the likelihood matrix is not fully specified. 

These hypotheses suggest that the Dempster-Shafer theory of evidence is an 
appropriate technique to fuse uncertain information. Because we have chosen to represent 
identity declarations in a hierarchical manner, the algorithm proposed by Shafer and Logan 
is appealing, both in terms of the information structure and computational requirements. 

An interesting issue which distinguishes this study from other studies on identity 
fusion is the fact that 2 different frames of discernment are introduced to estimate the 
identity of the observed objects. The first frame of discernment is the hierarchical tree of 
surface and air classifications, as shown in Figures Sa and 5b, and the second one deals 
with the threat categories as described in Figure 19. The purpose of this approach is to 
circumvent the problem whereby the threat category of a detected object is directly 
inferred from its identity. For example, in Figure 19 the Exocet missile is automatically 
assumed friendly. During the Falklands war, however, the Exocet missile was definitely 
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not considered fiiendly to the British Navy. By eliminating fals~~ automated inferences, this 

approach allows more freedom in the decision making. 

friend hostile 

friend surface 

FIGURE 19- Example ofFrame ofDiscernment Where Threat Category is Directly 

Inferred From Identity 

To accommodate a hierarchical structure, Figure 6 must be modified, as shown in 

Figure 20, to include 0 2 • The "pending" subdivision was eliminated since an uncertainty 

value for this element would not be available. Also, the "suspect" and "assumed fiiend" 

subdivisions had to be eliminated because they do not form a set of mutually exclusive 

events with the "hostile" and "fiiend" subdivisions (according to the definition of a frame 

of discernment). In our opinion, the two frames of discernment 0 1 and 0 2 of Figure 20 

could encompass most of the identity declarations within the naval environment. 

A general fusion approach is now proposed based on the concepts discussed in the 

previous chapters. 
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I unknown I I hostile 

82 
I 

I I neutral Jl friend 

FIGURE 20- The Two Frames ofDiscernment Used in the Identity Declaration Fusion 

Function 

The most basic concept to which the study adheres is the fact that information 

sources are self contained and that each one represents a local decision node capable of 

identifying a detected object (Section 2.2). The aim is, therefore, to combine local 

decisions in the hope of obtaining the correct identity with a high probability. Dasarathy 

(Ref. 54) calls this type of fusion "Decision In-Decision Out Fusion" because both the 

input and output are decisions. An appropriate architecture to delineate this concept is 

sensor level architecture (Subsection 2.3 .2.1 ). Figure 21 reproduces a simplified version 

of sensor level architecture from Figure 7. 

In the case of multiple objects in the detection environment, the association 

process matches the received identity declaration, originating from an information source, 

with one of the observed objects. Identity declaration is one of many components that 

characterize a detected object; these components form the state vector of the object and 

are called a track. Each detected object is typified by its track. In the event that an 

information source provides identity declaration for an existing track, the identity 

declaration fusion function becomes necessary to combine these declarations. 

Consequently, the fusion process is applied to each track based on the frame of 
discernment ( e 1> e 2 or both) according to the type of identity declarations to combine. 

For each track, the frames of discernment are identical; however, the belief and plausibility 

values vary according to the weight of the evidence received. 
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Source Y 

identity declarations 
(source Y) 

Association 

identity declarations 
(SO'JrCO Z) 

FIGURE 21 - Identity Declaration Fusion Process - Sensor Level Architecture 

It is noteworthy that the order in which bodies of evidence are received IS 

inconsequential since the orthogonal sum of the Dempster-Shafer technique is 

commutative and associative. Therefore, if two information sources simultaneously 

provide identity declarations on the same observed object, the combination of these 

evidences with the existing information will result in identical belief and plausibility values, 

whether one evidence is added before the other. 

If we assume that the association function performs p<~rfectly, the fusion function 

can be illustrated by the flowchart of Figure 22. Its major processes are outlined below. 

1. As described in Subsection 2.3 .2.2, it was assumed 1that all sources capable of 

providing identity declarations will do so by attaching to each declaration a 

quantitative measure of uncertainty. This measure corresponds to the probability 

that the identity declaration and detected object are matched or, equivalently, to 

the probability that declaration i from source s is true: 

Cs.i = P(declaration i from sources matches detected object) 

= P(declaration i from sources is true). 

In the case of non-sensor information sources, the matching coefficient Cs,i simply 

typifies a subjective confidence appraisal of the declaration. 
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2. It is further assumed that information sources provide single identity declarations 

as opposed to multiple declarations: 

example of single identity declaration: 

example of multiple identity declaration: 

military fixed wing, C s,i = 0. 7 

military fixed wing, C s,i = 0.4 

and civil fixed wing, C s,i 0 .1. 

Thus, it is simple to transform the probability of a true declaration into a 

dichotomous or simple support function. Effectively, if the single declaration is 

military fixed wing with Cs.i = 0.7, then we obtain the following simple support 

function: 

m(military fixed wing)= 0.7 

m(e) = 0.3. 

If the single declaration is military fixed wing with cs,i = 0. 7, not military fixed 

wing with c.i = 0.1, then we obtain the following dichotomous belieffunction: 

m( military fixed wing) = 0. 7 
m(military fixed wing)= 0.1 

m(0)=0.2. 

3. The dichotomous or simple support function is then combined with the belief 

value, or more precisely the dichotomous belief function of the same focal element 

within the hierarchical tree; this is accomplished using Dempster's combination rule 

as explained at stage 0 of Subsection 4.5.3. However, as shown in Subsection 

4.3.2, 
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Evidence: identity declaration + 
matching coefficient of source s 

with declaration i (C.) J 
1 

1 J 2 Transform Probability in~o 
dichotomous or simple 

support function 
~---------,--------

J, 3 

Combine dichotomous or 
simple support function to 

beliefvalue associated with 
corresponding node of 
hierarchical tree using 

Dempster's combination tule 
(Step 0) 

yes 
Combination invalid; f-.--

error message 

j, no 

Pro_pagate resulting 
dichotomous belief function 

through hierarchical tree using 
Shafer & Logan algorithm 

(Steps 1 to 3) 

Perform semi-automated! 
decision making proce5:_j 

Estimated identity of 
observed object 

FIGURE 22 - Flowchart ofldentity Declaration Fusion Function 

• the normalization inadequacies of Dempster's combination rule can pose a serious 

problem. Unfortunately, Yager's degree of informativeness cannot be applied since 

we are dealing with simple support or dichotomous functions. We could, 

however, easily determine the degree of conflict when combining simple support or 

dichotomous functions; this can be accomplished at stage 0, as described in 
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Subsection 4.5.3. Therefore, if the normalizing constant K is greater than an 

appropriate threshold value, the information is said to be in relative agreement and 

Dempster's combination rule can be applied. If the normalizing constant is smaller 

than the threshold, the bodies of evidence are conflicting, suggesting that one of 

the assessments is unreliable, signaling a potential information source problem 

(Abdulghafour & Abidi, Re£ 55). It is, therefore, suggested that the combination 
be suspended pending verification of the information sources. 

If the combination is valid, the result of the combination is propagated through the 
hierarchical tree using the Shafer-Logan algorithm. 

4. The last phase of the fusion function performs the semi-automated decision making 

process in the sense that the decision maker must select the best alternative among 
a limited subset of likely identity declarations. 

6.2 Example of the Fusion Function Applied to the Problem of Identity Declarations 

The following example illustrates the use of the Shafer-Logan algorithm for the specific 

problem of combining identity declarations using two frames of discernment. The first 

frame of discernment 81 is detailed in Figure 23. The hierarchy has been simplified from 
that ofFigures 5a and 5b. The names ofthe leaf nodes (for example MiG-19) were taken 

from Refs. 56-57 and are both friendly and hostile elements. The second frame of 

discernment 82 is exactly as described in Figure 20; in other words the leaf nodes are 
those of Figure 20. 

The scenario is as follows: the commander of a Canadian Patrol Frigate-type ship 
receives a series of identity declarations concerning one object; he/she must determine the 
identity of the object and take action. 

As in the previous examples, the belief and plausibility values at each node of the 

two hierarchical trees are zero. The evidences received from various information sources 

are given in Table III (assuming that the order of the received evidences is unimportant): 
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TABLE ill 

Evidences received from various souwes 

Frame of discernment e I Frame of discernment 0 2 

m({fighter}) = 0.4 m({unknown}) = 0.2 
m(e )=0.6 m(e) =0.8 

m({ carrier})= 0.7 m({ friend})= 0.6 
m(e)=0.3 m(e )=0.4 
m({fixed-wing}) = 0.3 m({hostile}) = 0.7 
m(e )=0.7 m(e)=0.3 

m({ non -combatant})= 0.8 m({neutral}) = 0.3 

m(e)=0.2 m(e) =0.7 

m({air}) = 0.5 m({hostile}) = 0.8 

m(e) =0.5 m(e )=0.2 

m( { air }) = 0.1 
m(e )=0.9 
m({MiG-25}) = 0.1 
m(e )=0.9 
m({helicopter}) = 0.5 
m(e) = 0.5 
m({MiG-19}) = 0.6 
m(e )=0.4 

m({ missile})= 0.7 
m(e)=0.3 
m({MiG-25}) = 0.4 
m(e) = 0.6 

The evidences are the only ones received concerning the object; a decision could be taken 

after each evidence if the plausibility of at least one node is greater than Tp1 . However, 

we have chosen to combine all the evidences before the decision making process. In this 

example, Tp1 will be set to .5. Evidences m({air}) = .5 and m({air}) = .1 are 

contradictory but not enough for the Dempster's combination rule to produce irregular 

results. Figures 24 and 25 show the belief and plausibility measures for each node after the 
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FIGURE 27- Graph Representing Best Alternatives Using 0 2 

combination of evidences for frames of discernment 0 1 and 0 2 , respectively. Figures 

26 and 27 are the graphs available to the decision maker. It seems that the object is 

airborne and hostile,and there is a fairly good chance that it is a fixed wing fighter. 

According to the mission, the decision maker will choose the best alternative and take 

appropriate action if necessary. 
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7.0 CONCLUSION 

This document is concerned with the use of the Dempster-Shafer theory of 

evidence for the fusion of identity declarations within a naval environment. It proposes 

to hierarchically structure the identity declarations according to NATO's STANAG 4420 

charts, which provide a better base for achieving interoperability in information exchange 

between nations than uncontrolled alternatives. 

The Bayesian approach is also investigated but is found to suffer from major 

deficiencies in a hierarchical context, when fully specified likelihoods are not available. 

Other problems associated with this approach are the coding of ignorance, and the strict 

requirements on the belief of a hypothesis and its negation. 

One drawback of the Dempster-Shafer evidential th(;!Ory is the long calculation 

time required by its high computational complexity. Due to the hierarchical nature of the 

evidence, an algorithm proposed by Shafer & Logan (1987) is implemented which 

reduces the calculations from exponential to linear time, proportional to the number of 

nodes in the tree. 

A semi-automated decision making technique, based on belief and plausibility 

values, is then described for selecting alternatives which 'best support the combined 

identity declarations. The final decision will be taken by the decision maker, because 

he/she remains an important part of the process and because the choice of the final 

identity is typically scenario and mission dependent. 

The use of the Dempster-Shafer theory of evidence in this document shows it to 

be a logical method of combining data from various sources to help the commander carry 

out his/her duties. However, the flexibility of the approach should not hide its 

shortcomings. For example, the normalization constant from Dempster's combination 

rule may give inaccurate results, and the independence requirements may sometimes be 

difficult to prove. Also, the final frame of discernment for threat categories ( E> 2 ), which 
had to be simplified due to the hierarchical constraints of the Dempster-Shafer technique, 

may not be sufficiently detailed for the needs of the commander. Lastly, because no 
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general method for decision making from hierarchical evidence is acknowledged in the 

literature, simple heuristic methods, such as the one proposed in Chapter 5, are usually 

applieq.. 

This document presents initial results of investigations on the use of the 

Dempster-Shafer approach in the naval environment. Nevertheless, the results show that 
the various concepts studied could be applicable to the domain of wide area fusion within 
the framework of a Communications, Command, Control and Intelligence (C3I) system. 
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APPENDIX A 

Examples of the Bayesian Approach 

A.l Examples of the Bayesian Approach (general case) 

To better appreciate the Bayesian approach to uncertainty in terms of 

representation and combination of information, two simple applications are given. 

The general context is the following: two possible missile types (type 1 and type 2) 

are known to be in the coverage area of two independent sensors. The first application 

deals with 2 successive identity declarations by a single sensor whereby the two 

declarations are missile type 1. Because these declarations are assumed to be 

conditionally independent, they can be fused using (3.6). If the. likelihood matrix is given 

by 

(
0.8 0.4) p . H. = 

(Ell ) 0.2 0.6 

and if the a priori probabilities P(Hi) are considered equal to 112, then the probability that 

each type of missile is present after the first declaration is: 

P( I 
1 ) 0.8 X 0.5 2 

type 1 Etype 1 = = 
0.8 X 0.5 + 0.4 X 0.5 3 

I ) 1 P(type 2 I Etype 1 = -
. 3 

After the second declaration, we obtain the following a posteriori probabilities: 

P(type 1 I E~ 1) =.8 

P(type 2 I E~ 1) =.2 

In the second application, two sensors (A and B) are capable of declaring the 

identity of targets and each sensor declares concurrently the missile to be of type 1. Let us 

assume that the sensors are identical such that the likelihood matrix of each sensor is given 

by: 
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(
0.8 0.4) p . H. = 

(Ell ) 0.2 0.6 

Let us assume also that the a priori probabilities P(Hj) are equal and that the sensors are 

independent, so that the joint probabilities are simply the product of their individual 

probabilities. The resulting likelihood matrix becomes: 

0.8 X 0.8 0.4 X 0.4 0.64 0.16 

0.8 X 0.2 0.4 X 0.6 0.16 0.24 
= 

0.2 X 0.8 0.6 X 0.4 0.16 0.24 

0.2 X 0.2 0.6 X 0.6 0.04 0.36 

where 0.64 = P(evidence from sensor A, evidence from sensor B I missile type I) 

= P( evidence from sensor A I missile type I) x P( evidence from sensor B I 
missile type I) 

= 0.8 X 0.8 

since evidences are conditionally independent. 

The probability that each type of missile is present after both concurrent evidences is: 

P(missile type I I Evidence sensor A, Evidence sensor B)= 

0.64 X 0.5 
0.8 

0.64 X 0.5 + 0.16 X 0.5 

P(missile type 21 Evidence sensor A, Evidence sensor B)= 0.2 

The fact that the same results are obtained in the two examples is not surprising 

since, in both cases, the successive evidences are assumed to be conditionally independent. 

Whether these evidences come from 2 different sources, or from the same source at two 

different points in time, makes no difference in the analysis. 
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A.2 Example of the Technique Suggested by J. Pearl 

Figure 9 provides an example of a strict hierarchical tree of hypotheses: n = { C, 

D, I, K, L, M, N, 0, P}. As before, other letters are used to represent unions ofthese 

outcomes, e.g. B = { C, D}, G = {L, M} and H = {K, N, 0, P}. A priori probabilities are 

indicated for each set of interest. For example, P(G) = P(L) + P(M) = 0.3 + 0.2 = 0.5 and 

similarly P(H) = 0.2. Now suppose that information is received concerning hypothesis set 

H in such a way that 

P(E1 I H) = 0.5 and P(E1 I H) = 0.2 

This information can be represented differently by the likelihood matrix: 

(
0.5 0.2) 

P(EiiH) = 0.5 0.8 

where H 1 =H, H 2 =HandE2 =E. 

If E 1 is observed, then: 

O(H) = 0.2 I 0.8 = 114 

AH = 0.5 I 0.2 = 2.5 

a~ = 11 [(2.5 x 0.2) + 1- 0.2] = 0.769 

P(H I El) = 0.769 X 2.5 X 0.2 = 0.3845 

and hence P(H I E 1) represents the posterior probability of H given E 1 , indicated in 

parentheses beside the prior probability of H, in Figure 9. To determine how this new 

evidence affects H's parents and children, we use Pearl's formulas. For J, which is a child 

ofH, we find: 

P(J I E 1 ) = 0.1 x 0. 769 x 2.5 = 0.19225 (Child of H) 

For F, which is a parent ofH, we find: 

P(F I EJ = 0.769 (0.8- 0.2) + 0.3845 = 0.8459 (Father ofH). 
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Updated values for every other parent and child ofH are indicated in parentheses in Figure 

9. The updated belief for hypothesis set A is not equal to one due to rounding-off errors. 

It is important to note that Pearl's algorithm is based exclusively on the simple 

concept of proportional allocation. In the above example, for instance, node H is the only 

one that can be formally updated by Bayes' theorem, since the likelihood matrix merely 
specified P(E1IH) and P(E1IH). This information by itself does not permit updating of 

probabilities for the children or parents of H, even though it is known that these 

probabilities must also have changed. To alleviate this di1iiculty, Pearl suggests 
proportionally allocating P(E 1IH) and P(E1IH) to the a priori evidence of the other nodes, 

while keeping in mind that each node of the tree should acquire a belief equal to the sum 

of the beliefs belonging to its immediate successors. Thus, for example, nodes J and K are 

both updated to 0.19225, on the basis that their a priori probabillities were equal to 0.1, 

despite the fact that no specific information is available to determine how these 

probabilities have actually been affected by evidence H. 

While this rule is reasonable, it is clearly conventional and may not always lead to 
an appropriate estimation of the posterior probabilities associated with certain nodes of a 

hierarchy. On the other hand, adoption of such a rule is necessary in order that future 
evidence on node H, or on any other node, could again be incorporated into the 
probability distribution by Bayes' rule. 
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APPENDIXB 

Examples of Evidential Theory 

B.l Example of Terminology of Evidential Theory 

A simple numerical example will help clarify the wealth of tenninology associated 

with the Evidential theory. Let 0 = {X, Y,Z}. The set of all subsets of 0 (20) contains 8 

elements, namely {X,Y,Z},{X,Y},{X,Z},{Y,Z},{X},{Y},{Z},0. Let us assign basic 

probability numbers to each subset as follows. This is formally the same as assigning 

probabilities to the preceding set of eight points, ignoring their nature, i.e., the fact that 

{X} c {X, Y, Z}, for example. 

m({X, Y,Z}) = 0.1 

m({X, Y}) = 0.3 

m({X,Z}) = 0.0 

m({Y,Z}) = 0.3 

m({X}) = 0.2 

m({Y}) = 0.0 

m({Z}) = 0.1 

m(0)=0.0 

The focal elements are the following: {X, Y,Z}, {X, Y}, {Y,Z}, {X}, {Z}. They are the sets 

to which m assigns strictly positive mass. The degree of belief Bel for each subset is 

obtained as follows from (4.2): 

Bel({X, Y,Z}) = '1.0 

Bel({X, Y}) = 0.5 

Bel({X,Z}) = 0.3 

Bel({Y,Z}) = 0.4 

Bel({X}) = 0.2 

Bel({Y}) = 0.0 

Bel({Z}) = 0.1 

Bel(0) = 0.0 

Thus, for example, Bel{Y, Z} = m{Y, Z} + m{Y} + m{Z} + m(0) = 0.4. 

Clearly, Bel adheres to the constraints of a belief function. As pointed out earlier, it is 

possible to retrieve basic probability numbers from the degrees of belief of each subset: 

For example, 

m({Y,Z)} = (-1)0 Bel({Y,Z}) + (-1)1 Bel({Y}) + (-1)1 Bel({Z}) + (-1)2 Bel({ 0}) 

= 0.4- 0.0- 0.1 + 0.0 = 0.3 

The commonality number Q for each subset is easily obtained from (4.4): 
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Q({X}) =0.6 

Q({Y}) =0.7 

Q({Z}) = 0.5 

Q(0) =I. 0 

The same results can be obtained by applying (4.3). Thus, for instance: 

Q({X, Y}) = (-1)2 Bel({X, Y}) +(-1YBel({X}) +(-1YBel({Y})+ (-1)0 Bel(0) 

= 0.1 - 0.4 - 0.3 + 1. 0 = 0.4 

Next, using (4.5), the degree of belief of each subset can be calculated from the 

commonality number. For example, 

Bel({Y,Z)} = (-1)1 Q({X}) + Q(0) = -0.6 + 1.0 = 0.4 

To compute the degree of plausibility of each subset, ( 4.6) is used: 

Pl({X,Y,Z}) = 1.0 

Pl({X, Y}) = 0.9 

Pl({X,Z}) =I. 0 

Pl({Y,Z}) = 0.8 

Pl({X}) = 0.6 

Pl({Y}) = 0.7 

Pl({Z}) = 0.5 

Pl(0) = 0.0 

The evidential interval for each subset is then as follows: 

subset {X, Y,Z} : [1.0, 1.0] subset {X} : [0.2, 0.5] 

subset {X, Y} : [0.5, 0.9] subset {Y} : [0.0, 0.7] 

subset {X,Z} : [0.3, 1.0] subset {Z} : [0.1, 0.5] 

subset {Y,Z} : [0.4, 0.8] subset 0 : [0.0, 0.0] 

B.2 Proof of eq. (4.12) 

Proof From the definition of A's commonality number (equation 4.4), one has 

Q(A) = L:m(B), 
B~;;e 
A~B 
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where m = m 1 E9 m 2 • Replacing m(B) with its orthogonal sum (equation 4.9) yields 

Q(A)= K L 
BQa 
As;;B 

Z:m1(BJ m2 (Cj) 

B1~~j=B 

= K L m1(BJ m2 (Cj) 
i.j 

As;;B1ncJ 

= K L m1(BJ mzCC) 
i.j 

As:;BI 
As;;CJ 

= K Q1(A) Q2 (A), for all non-empty Ac 0. 

This completes the proof 

B.3 Example of Dempster's Rule of Combination 

Let 0 ={X, Y,Z}, and m 1 and m 2 be basic probability assignments such that: 

m 1 ({X})= 0.2 

m 1 ({X,Y}) = 0.4 

m 1 (0) = 0.4 

m 2 ({Y}) = 0.4 

m 2 ({X, Y}) = 0.4 

m2 ({X,Z}) = 0.1 

m2 (0) = 0.1 

and m; (A) = 0, i = 1,2 for all non listed subsets of 29 
. 
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Using Dempster's rule of combination, we proceed as follows to derive a new basic 

probability assignment: 

~({Y}) 

.4 

m2 ({X,Z}) 

.1 

m (0) 
.1 

)I' 
{} 

.08 

{X} 

.08 

{X} 

.02 

{X} 
.02 

m 1 ({X}) 

.2 

Before Normalization 

m({X}) = 0.16 
m({Y}) = 0.32 
m({Z}) = 0.0 
m({X, Y}) = 0.36 
m({X,Z}) = 0.04 
m({Y,Z}) = 0.0 
m(e) = 0.04 
m(0) = 0.08 

{Y} {Y} 
.16 .16 

{X,Y} {X:,Y} 
.16 .16 

{X} {X,Z} 

.04 .04 

{X,Y} 8 
.04 .04 

After Normalization (1/K = 0.92) 

m({X}) = 0.17 
m({Y}) = .35 
m({Z}) = 0.0 
m({X, Y}) = 0.39 
m({X,Z}) = 0.045 
m({Y,Z}) = 0.0 
m(e) =0.045 
m(0)=0.0 

PI( {X}) = . 65 
Pl({Y}) = 0.785 
Pl({Z}) = 0.09 
Pl({X, Y}) = 1.0 
Pl({X,Z}) = 0.65 
Pl({Y,Z}) = 0.83 
Pl(e) = 1.0 
Pl(0) = 0.0 

Identical results in terms of the degree of plausibility are obtained from the 

commonality functions using (4.15). The commonality numbers calculated from (4.13) 

and the normalizing constant from (4.14) are given below: 
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i 

Q2 ({X}) = 0.6 

Q2({Y}) = 0.9 

Q2 ({Z}) = 0.2 

Q2 ({X, Y}) = 0.5 

Q2 ({X,Z}) = 0.2 

Q2 ({Y,Z}) = 0.1 

Q2(0) = 0.1 

Q2(0) = 1.0 

1/K = 0.92 

In the example, the body of evidence Y is implied by X; as a consequence, evidence Y is 
already taken into account in the basic probability assignment m x . The example is 

reproduced below. 

Let 0 be the frame of discernment {A, A } , where A denotes the 

proposition "patient P has the flu". Suppose that X represents the 

observation that P has a fever> 39°C, that Y represents the 

observation that P has a fever> 38.5°C and that the basic probability 

assignments of X andY are: 

mx(A)=.6 

my(A)=.4 

mx(0)=.4 

my{0)=.6 

According to Dempster's combination rule, Bel x (A) E9 Bel Y (A) = 0. 76. 

However, since Y is implied by X, we would assume that 
Belx(A) E9 Bely(A) = Belx(A) = .6. This is obviously not the case; 

therefore Belx(A)ffi Bely(A) is unacceptable. 

It is important to note that Voorbraak's example is based on the principle that an 

observation is received and inference is applied to the observation to obtain a conclusion: 

observation => inference => conclusion. 

Using a different terminology, we have: 
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evidence => inference => hypothesis . 

This is clearly depicted by Voorbraak's example reproduced abov<~: 

{
X: P has fever > 39° C => inference => A: patient P has flu 

example 
Y: P has fever> 38.5°C =>inference=> A: patient P has flu 

As mentioned earlier, Belx(A) El3 Bely(A) is unacceptable in this context. 

However, modifying Voorbraak's example by eliminating the inference process 

simplifies the independence concept, since the type of evidence has changed and the 

relationship between the evidence and inference process is eliminated. If we assume that 

doctors C and D provide independent diagnoses, then we could say that evidences X and 

Y are independent under this modified structure: 

{
X: doctor C diagnoses flu => A: patient P has flu 

modified example 
Y: doctor D diagnoses flu=> A: patient P has flu 

Here Belx(A)EB Bely(A) is acceptable and the evidences seem independent according to 
Shafer since, when viewed abstractly, the information originates from two assumed 
independent diagnoses. 

B.5 Example of Dempster's Rule with Too Coarse a Frame of Discernment 

Let 8 ={a, b, c, d} and Q = { mp m2 }, where 'f/:2° ~ 29 is the refining given 

by 'f/({m1 }) ={a} and 'f/({m2 }) = {b, c, d}. The set n is then a coarsening of e. 
Assume that the first body of evidence produced a simple support function S1 over 8 

focused on A = {a, b}, whereas the second body of evidence produced a simple support 

function S2 over 8 focused on B = {a, c}. Neither S1 nor S2 record any support for 

either {a} or {b, c, d}. Therefore, S1l2°, S2 l2° and (S 1I2°)EB(S2 I2°) are all vacuous. 

However, ((S 1I2 9
) El3 (S2 I2 9 ))12° is not vacuous, since it provides the degree of support 

S1 (A) S2 (B)> 0 for An B ={a}. Thus ((S 1I2 9
) El3 (S2 I2 9 ))12° * ((S1I2°) El3 (S2 I2°))12°. 

In our study of identity declaration fusion, this difficulty can be easily alleviated 

by choosing the frame of discernment fine enough to discern all relevant interaction of 
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evidence to be combined. This will be easily attainable due to the nature of the evidence 

(identity declaration) and because the evidence will be structured in a strict hierarchy. 

B.6 Proof of Equation (4.16) 

· Proof: 
a. For any A, one has n A ~ n, and hence 

1 
p m :?: - L m(A) . 

n A 

Now since L m(A) = 1, it follows that P m :?: 1/ n. Also, n A :?: 1 for 

any A :t= 0, and hence 

Pm S 2:m(A) ~ 1. 
A eX 

b. Ifm is vacuous, m(X)=1 and hence P m =lin. 

Ifm is not vacuous, then there exists some A such that m(A) > 0 and nA < n; 

therefore 

c. Assume that m is Bayesian. Then the sets having m(A) > 0 are only the 

singletons. Thus 
n 

Pm = :Lm({xJ) ~ 1. 
i=l 

Assume that m is not Bayesian. Then there exists some A such that m(A) > 0 and 
ll A > 1, Whence p m < 1. 

This completes the proof 

As an example, let 0 = {W, X, Y, Z}, and m1 and m2 be basic probability assignments 

defined as follows: 
m1 ({X, Y}) = 0.4 

m1 ({Z}) = 0.2 

m1 (0) = 0.4 

Again, mi (A)= 0, i = 1,2 if A is not listed above. 

Therefore, 
Pm

1 
= 0.4/2 + 0.2/1 = 0.4 

m2 ({W, X, Y}) = 0.4 

m 2 ({Z}) = 0.2 

m2 (0) = 0.4 

Pm = 0.4/3 + 0.2/1 = 0.33 
2 
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B. 7 Proofs of the Entropy Measure Properties 

Proof 

a. Since for a Bayesian belief function m(A) = 0 for all non-singletons, 

Em = L m( { x}) Con(Bel, Bel A). 
xcX 

Let gx denote the basic assignment function associated with the certain support 

function at { x}. Then 

gx ({x}) = 1, 

gx (B)= 0 for all other B c X, and 

Con(Bel,Bel{x}) = -ln(1- k) where k = Lm(AJ gx(Bj). 
~j 

forA1nBJ•0 

Since gx (B) = 0 for B * { x} and is equal to 1 elsewhere, 

k= l:mCAJ. 
i for A1n{x}•0 

Since m is Bayesian, 

k= l:m({xJ) = l:m({xJ) 1-m{(x}). 
i i 

{xi}n{x}•0 forx1"'x 

Thus, 
Con(Bel,Bel{x}) = -ln(l- [1- m({x})]) = -ln(m[{x})]. 

and hence 
Em =- :Lm({x}) ln[m({x})]. 

xEX 

b. Since Pl(A) e[O,l] for all A c X, one has ln(Pl(A))~ 0. Furthermore, since 

m(A) e [0, 1], it must be that 
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Em=- :Lm(A) ln(Pl(A)) ~ 0. 
A eX 

Let us introduce n focal elements with values m(AJ =a;. We have 

where 

Therefore, one has 

n 

Em =-L m(AJ ln[Pl(AJ] 
i=l 

n 

AJ 
for A 1r>Ar,o0 

i=j 

Em =-:La; ln(a; +dJ. 
i=l 

As d; increases, ln(a; +d;) increases and - L~)n(a; + d;) decreases. 

Consequently, Em is maximal when d; = 0 for all i. This occurs when all the Ai 

are disjoint. If we assume n disjoint focal elements with m(A;) = 1 In, we obtain 

a maximal Em, namely 

n 

Em = -L 11 n ln(ll n) = ln(n). 
i=l 

c. From the definition of Em, Em= 0 ifthere is an A such that m(A) '# 0, which 

requires in tum that ln[Pl(A)] = 0 and Pl(A)=l. Since 

Pl(A) = L m(B), 
B 

BnA"'0 

this means that every pair of focal elements must have at least one element in 

common. 

d. Em= ln(n) iffm(A;) = 1/n for i=l, 2, ... ,n was proved in b. above. 

This completes the proof 
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Shannon's entropy measures the discordance associated with a probability 
distribution (Yager, 1983). As an example, let 0 = {W, X, Y, Z}, and m 1 and m2 be 

basic probability assignments defined as follows: 

Then, 

m1 ({W}) = 0.25 

m1 ({X})= 0.25 

m 1 ({Y}) = 0.25 

m1 ({Z}) = 0.25 

m2 ({W}) = 0.5 

m2 ({W, X})= 0.25 

m2 ({Z}) = 0.25 

Em
1 

= - [0.25 .In(0.25) + 0.25 .In(0.25) + 0.25 ·ln(0.25) + 0.25 .In0(.25)] = 1.386 

Em
2 
= -[0.5 .In(O. 75) + 0.25 .In(O. 75) + 0.25 .In(0.25)] = 0.562 

Em
1 
= -[0.5 .In(O. 75) + 0.25 .In(O. 75) + 0.25 •ln(0.25)] = 0.562 
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APPENDIXC 

The Shafer and Logan Algorithm 

C.l Formulas for the Shafer and Logan Algorithm 

The formulas for the Shafer and Logan algorithm are given below. For each node A in 

9l, let 

Stage 1 

A;= BelA(A) 

A~= Bel~(A) 
A+ =(BelA$ Bel~ )(A) 

A; = (Bel A $Bel~ )(A) 

A~= Bel~(A) 

A~= BelA(A) 
- .J,-

A.J- =BelA(A) 

A- =(BelA$ Bel~)(A) 
A;= (BelA $Bel~)(A) 

- .J,-A9 = Bel9 (A) 

Calculate A~ and A~ from B+ and B- forB in I! A : 

A! = 1-K, 

A~= K. II B- 1(1-B+) 
BelA 

where 11 K = 1 + L B + I (1- B +) . 
BElA 

Calculate A+ and A- from A;, A~, A! and A~: 

A+= 1-K(l-A;)(1-A;), 

A- = 1- K(1- A~)(1- A~), 

where 11K = 1-A; ·A~ -A~ ·A!. 

Stage 2 
Calculate A~ and A; for A in /!9 from A+ and A- for A in /!9 : 

A~= 1-K(1+ L:B+ 1(1-B+))- II B- 1(1-B+), 
Beta 

Bel9 B>'A 
B>'A 

A; = 1- K(l- A-) I (1- A+), 
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Calculate A~ and A0 from A;, A9, A!, and A~: 

A; = 1- K(1-A;)/ (1-A!), 

A0 = 1-K(1-A9)/(1-A!), 

h 1/K 
1-A; 1-A9 1-A; Aa w ere = + - _ ___;~-=-
1-A! 1-A~ 1-At -A~ 

Calculate B:' B~' and B: from c+ and c- for c in .e A : 

B: =I-K(1+ :Lc+ /(1 c+)), 
CetA 
c .. B 

where 1/ K = 1 + L C + I (1- C +) . 
cetA 

Calculate 
B~ and B8 from A!, A~, A;, A;, B:, B~ and B: where lB is a daughter of A: 

B~ = K(A;(B: -A!)+(1-A; -A0)B:), 

Ba = 1-K(l- A 0)(1- B~). 

where 1/K = 1-At ·A¢ -A~ ·A~. 

C.2 Example of Dempster's Combination Rule with Bayesian Belief Functions 

This example uses the strict hierarchical tree illustrated in Figure 9 of Subsection 

3.6.3. The a priori probabilities are indicated for each S€~t of interest. Information 

received concerns hypothesis H: 

P(E1 jH) = 0.5 and P(E1 jH) = 0.2 
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To be compatible with the input ofDempsteris combination rule, this information must be 

transformed as follows: 

such that P(HjE 1) = 0.714 and P(HjE1) = 0.286. We therefore obtain the following 

basic probability assignments: 

m 1 ({H}) = ({K, N, 0, P}) = 0.714, 

m 1 ({H}) = ({C, D, I, L, M}) = 0.286, 

m 1 (0) = ({C, D, I, K, L, M, N, 0, P}) = 0.0, 

which represent a simple support function focused on a subset of e and its complement, 

with no uncertainty. This basic probability assignment is then combined to the a priori 

probability of hypothesis H (0.2) using Dempster's combination rule: m = m1 EI7 m 2 : 

m1 ({H}) = m1 ({K, N, 0, P}) = 0.7143 

m1 ({H}) = m1 ({C, D, I, L, M}) = 0.2857 

m1(0) = 0.0 

m2 ({H}) = m2 ({K, N, 0, P}) = 0.2 

m2 ({G}) = m2 ({L, M}) = 05 

m 2 ({I})= 0.1 

m 2 ({B}) = m 2 ({C, D}) = 0.2 

Before Normalization 

m({K, N, 0, P}) = 0.14286 

m({L, M}) = 0.14285 

m({I}) = 0.02857 

m({C, D}) = 0.05714 

m(0) = 0.62858 

AfterNormalization (K-1 = 0.37142) 

m({K, N, 0, P}) = 0.3845 

m({L, M}) = 0.3845 

m({I}) = 0.0769 

m({C, D}) =0.1538 

m(0) =0.0 
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C.3 Example of Shafer & Logan Algorithm 

This example, in which 6 sets of evidence are combined, illustrates the propagation 

effect of the Shafer & Logan algorithm. The same strict hierar,chical tree as above is used. 

The example is composed of 6 steps, at which additional evidence is received for a specific 

node in the form of a simple support function or dichotomous function, and then 

combined. The new belief (Bel) and plausibility (Pl) values are calculated for each node. 

As a reminder, for each node A in the tree: 

Bel( A) = Bel~ (A) 

= A~ (according to Annex B), 

Pl(A) = 1- Bel( A) = 1- Bel~ (A) 

= 1-A~ (according to Annex B). 

The evidence to be combined is as follows: 

step1: m({N}) = .5 m(0) = .5 

step2: m({H}) = .5 m(0) = .5 

step3: m({F}) = .9 m(0) = .1 

step4: m({F}) = .0 m({F}) = .5 m(0) = .5 

stepS: m({B}) = .99 m({F}) = .01 m(0) = .0 

step6: m({B}) = .05 m(0) = .95 

At step 0, all the belief and plausibility values of each node are zero. Figures 13 to 18 

show the results of the Shafer-Logan algorithm after adding evidence from step 1 to 6 

respectively. 

To demonstrate the use of the various formulas of the Shafer-Logan algorithm 

given in Section C.1, calculations are shown below for step 1. 

Stage 0 
m({N}) =Bel({N}) = .5 and m(0)= .5 
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Let A= node J; then 

1/K= 1 + .5/(1-.5) + 0/1 + 0/1 = 2; K = .5 
IX= 1-K= .5 

J~ = .5 (0/ (1-.5) X 0/1 X 0/1) = 0 

1/K = 1 - 0 X 0- 0 X .5 = 1; K = 1 
r = 1-1 o-o)(1-.5) = .5 

r = 1-1 (1- o)(l- o) = o 

Let A= node H; then 

1/K =1 + .5/(1-.5) + 0/1 = 2; K = .5 
HX = 1-K= .5 

H~ = .5(0/(1-.5)x0/l)=O 

1/K = 1- 0 X 0- 0 X .5 = 1; K = 1 
H+ =1-1 (1-0)(1-.5)= .5 

H- = 1- 1 (1- 0)(1- 0) = 0 

Let A =node F; then 

1/K = 1 + 0/1 + .5/(1-.5) + 0/1 = 2; K = .5 
F{ = 1-K= .5 

Fi= .5(0/lx0/(1-.5)x0/1)=0 

1/K = 1 - 0 X 0- 0 X .5 = 1; K = 1 
p+ = 1-1 (1- 0)(1-.5) = .5 

p- = 1-1 (1- 0)(1- 0) = 0 

Let A = node G; then 
G+ = G · = G + = G- = 0 .j.. .j.. 

Let A = node B; then 
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1/K = 1 + (011 + .51(1-.5))- (011 x 01.5) = 2; K = .5 

B~ = 1 - .5 (1 + .51 (1-.5)) - 0 = 0 

Ba = 1 - .5 (1- 0) I (1 - 0) = .5 

F~ = 1 - .5 (1 + 0) - 0 = .5 

Fe = 1 - .5 (1 - 0) I (1 - .5) = 0 

Stage 3 

Let A= node B; then 

1/K = (1 - 0)1(1 - 0) + (1 - .5)1(1 - 0)- (1- 0 - .5)1(1 - 0- 0) 1 
B; = 1 - 1(1 - 0) I (1 - 0) = 0 

B0 = 1 - 1(1 - .5) I (1 - 0) = .5 

1/K = 1 + 0/1 + 011 = 1; K = 1 
c~ = 1 - 1(1 + o 1 (1 - o)) = o 
Cs = 1 - 1(1 - 0) I (1 - 0) = 0 

c~ = 1 - 1(1 + 011 - Oil) = o 
and in a similar fashion, 

o+ o· o·=o B B B 

1/K = 1 + 0 X .5 - 0 X 0 = 1 
C~ = 1 (0 X (0 - 0) + (1 - 0 - .5) X 0 = 0 

c9 = 1 - 1c1 - .5)(1 - o) = .s 
and in a similar fashion, 

D~ = 0 andDa =.5 

Let A= node F; then 
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1/K =(I - .5)1(1 - .5) +(I - 0)1(1 - 0)- (1- .5- 0)1(1 -.5-0)= 1 
F; = 1 - 1(1 - .5) I (1 - .5) = 0 

F; = 1 - 1(1 - 0) I (1 - 0) = 0 

1/K = 1 + 01(1-0) + .51(1-.5) + 01(1-0) = 2; K = .5 

G;= 1- .5(1 + .51(1- .5) + 01(1- 0)) = 0 

G~ = 1 - .5(1 - 0) I (1 - 0) = .5 

G;= 1- .5(1 + .51(1- .5) + 01(1- 0) -0) = 0 

H; = 1 - .5(1 + 0 I (1 - 0) + 0 I (1 - 0)) = .5 

H~ = 1 - .5(1 - 0) I (1 - .5) = 0 

H; = 1 - .5(1 + 0 I (1 - 0) + 0 I (1 - 0) - 0) = .5 

I; = 1 - .5(1 + 0 I (1 - 0) + .5 I (1 - .5)) = o 
I~ = 1 - .5(1 - 0) I (1 - 0) = .5 

I; = 1 - .5(1 + 0 I (1 - 0) + .5 I (1 - .5) - 0) = 0 

1/K = 1 + .5 X 0 - 0 X 0 = 1 
G~ = 1 (0 X (0 - 0) + (1 - 0 - 0) X 0) = 0 

G9 = 1 - 1(1 - o)(I - .5) = .5 

H~ 1 (0 X (.5 - 0) + (1 - 0 - 0) X .5) .5 

H9 = 1 - 10 - o)(l - o) = o 

I~ = 1 (0 X (0 - 0) + (1 - 0 - 0) X 0) = 0 

I9 = 1 - 10 - o)(l - .5) = .5 

We have thus obtained Bel(B), Bel( C), Bel(D), Bel(F), Bel( G), Bel(H), Bel(I), where 

Bd(B)=Bd~(B)=B~=O~d 
.J, - -Pl(B) = 1- Bel8 (B)= 1- B8 = 1-.5 =.5 . 

The belief ~d plausibility of the other nodes can be obtained in a similar fashion using 

stage 3 of the algorithm. 
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